Connected Linear Groups as Differential Galois Groups

THEOREM 1.1. Let C be an algebraically closed field of characteristic zero, G a connected linear algebraic group defined o er C, and k a differential field containing C as its field of constants and of finite, nonzero transcendence degree o er C; then G can be realized as the Galois group of a Picard]Vessiot extension of k. w x Previous work by Kovacic 17, 18 reduced this problem to the case of powers of a simple connected linear algebraic group. Our contribution is to show that one is able to realize any connected semisimple group as a Ž . Galois group and, when k s C x , x9 s 1, to control the number and types of singularities when one constructs a system Y 9 s AY, A g Ž Ž .. M C x , realizing an arbitrary connected linear algebraic group as its n

[1]  Carol Tretkoff,et al.  Solution of the Inverse Problem of Differential Galois Theory in the Classical Case , 1979 .

[2]  Felix Ulmer,et al.  Note on Kovacic's Algorithm , 1996, J. Symb. Comput..

[3]  E. Sanchez-Palencia,et al.  Lecture notes in pure and applied mathematics no. 54: Nonlinear partial differential equations in engineering and applied science: 1980, edited by L. Sternberg, A. K. Kalinowski and J. S. Papadakis. New York: Marcel Dekker. 505 pp; price SFr 125 , 1981 .

[4]  Frits Beukers,et al.  Monodromy for the hypergeometric functionnFn−1 , 1989 .

[5]  Michael F. Singer,et al.  Moduli of linear differential equations on the Riemann sphere with fixed Galois groups , 1993 .

[6]  John C. Miller Differentially Hilbertian differential fields , 1974 .

[7]  L. Goldman Specialization and Picard-Vessiot theory , 1957 .

[8]  N. M. Katz On the calculation of some differential galois groups , 1987 .

[9]  Claude Mitschi,et al.  DIFFERENTIAL GALOIS GROUPS OF CONFLUENT GENERALIZED HYPERGEOMETRIC EQUATIONS: AN APPROACH USING STOKES MULTIPLIERS , 1996 .

[10]  A. Beauville,et al.  Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann , 1993 .

[11]  Michael F. Singer,et al.  Galois Groups of Second and Third Order Linear Differential Equations , 1993, J. Symb. Comput..

[12]  M. Singer,et al.  On Ramis's solution of the local inverse problem of differential Galois theory , 1996 .

[13]  K. Boussel Groupes de galois des equations hypergeometriques reductibles , 1992 .

[14]  G. Mostow,et al.  Fully Reducible Subgroups of Algebraic Groups , 1956 .

[15]  E. B. Dynkin,et al.  The maximal subgroups of the classical groups , 1960 .

[16]  Felix Ulmer,et al.  Note on Kovacic's algorithm , 1995, SIGS.

[17]  A. Duval,et al.  Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées. , 1989 .

[18]  Andy R. Magid,et al.  Lectures on differential Galois theory , 1994 .

[19]  Armand Borel Linear Algebraic Groups , 1991 .

[20]  J. Kovacic,et al.  On the Inverse Problem in the Galois Theory of Differential Fields: II , 1969 .

[21]  M. Singer Algebraic Relations Among Solutions of Linear Differential Equations: Fano's Theorem , 1988 .

[22]  A. H. M. Levelt,et al.  Differential Galois theory and tensor products , 1990 .

[23]  M. Rosenlicht,et al.  Integration in Finite Terms , 1972 .

[24]  Michael F. Singer,et al.  Algebraic relations among solutions of linear di erential equations , 1986 .

[25]  E. R. Kolchin,et al.  Algebraic Groups and Algebraic Dependence , 1968 .

[26]  I. Kaplansky An introduction to differential algebra , 1957 .

[27]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .