A Spatiotemporal Database for Ozone in the Conterminous U.S.

This paper considers a set of ozone data in the conterminous U.S., which records the ozone concentration levels at a set of monitoring sites during 1994 and 1999. Existing GIS techniques are insufficient in handling such kind of spatiotemporal data in terms of data interpolation, visualization, representation and querying. We adopt 3D shape functions from finite element methods for the spatiotemporal interpolation of the ozone dataset and analyze interpolation errors. The 3D shape function based method estimates ozone concentration levels with less than 10 percent mean absolute percentage error. We give two approaches for visualizing the data: (i) combining the ArcGIS visualization tool with shape function interpolation results to visualize the ozone data for each year from 1994 and 1999, (ii) using Matlab to visualize the interpolated ozone data in a 3D vertical profile display. For the spatiotemporal data representation, we use the constraint data model, because it can give an efficient and accurate representation of interpolation results. Finally, we give some practical query examples

[1]  Jan Chomicki,et al.  Constraint-Based Interoperability of Spatiotemporal Databases , 1997, SSD.

[2]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[3]  G. Langran Time in Geographic Information Systems , 1990 .

[4]  Jiang Li,et al.  A SHAPE-BASED APPROACH TO CHANGE DETECTION AND INFORMATION MINING IN REMOTE SENSING , 2003 .

[5]  Donna Peuquet,et al.  An Event-Based Spatiotemporal Data Model (ESTDM) for Temporal Analysis of Geographical Data , 1995, Int. J. Geogr. Inf. Sci..

[6]  Jan Chomicki,et al.  Classes of Spatio-Temporal Objects and their Closure Properties , 2004, Annals of Mathematics and Artificial Intelligence.

[7]  Youming Li,et al.  A New Shape Function Based Spatiotemporal Interpolation Method , 2004, CDB.

[8]  N. Lam Spatial Interpolation Methods: A Review , 1983 .

[9]  Jan Chomicki,et al.  A geometric framework for specifying spatiotemporal objects , 1999, Proceedings. Sixth International Workshop on Temporal Representation and Reasoning. TIME-99.

[10]  Peter Z. Revesz,et al.  Parametric Rectangles: A Model for Querying and Animation of Spatiotemporal Databases , 2000, EDBT.

[11]  Marc P. Armstrong,et al.  Temporality in Spatial Databases , 1988 .

[12]  Ralf Hartmut Güting,et al.  Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases , 1999, GeoInformatica.

[13]  S. T. Buckland,et al.  Computer Intensive Statistical Methods: Validation, Model Selection, and Bootstrap , 1993 .

[14]  Peter Z. Revesz,et al.  Spatiotemporal reasoning about epidemiological data , 2006, Artif. Intell. Medicine.

[15]  Robert Tibshirani,et al.  Computer‐Intensive Statistical Methods , 2006 .

[16]  J. S. Urban Hjorth,et al.  Computer Intensive Statistical Methods: Validation, Model Selection, and Bootstrap , 1993 .

[17]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[18]  M. Walton THE BASIS FOR A , 1976 .

[19]  Floris Geerts,et al.  Constraint Query Languages , 2008, Encyclopedia of GIS.

[20]  Jun Gao,et al.  Voting prediction using new spatiotemporal interpolation methods , 2006, DG.O.

[21]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[22]  Lixin Li,et al.  A Comparison of Spatio-temporal Interpolation Methods , 2002, GIScience.

[23]  Ralf Hartmut Güting,et al.  A data model and data structures for moving objects databases , 2000, SIGMOD 2000.

[24]  Bart Kuijpers,et al.  Introduction to constraint databases , 2002, SGMD.

[25]  Peter Z. Revesz,et al.  Efficient Querying and Animation of Periodic Spatio-Temporal Databases , 2004, Annals of Mathematics and Artificial Intelligence.

[26]  Ronald J. Classen,et al.  Introduction to Geographic Information Systems , 2001 .

[27]  Lixin Li,et al.  Interpolation methods for spatio-temporal geographic data , 2004, Comput. Environ. Urban Syst..

[28]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[29]  Peter Z. Revesz,et al.  Efficient Querying of Periodic Spatiotemporal Objects , 2000, CP.

[30]  Michael F. Worboys,et al.  A Unified Model for Spatial and Temporal Information , 1994, Comput. J..

[31]  Ralf Hartmut Güting,et al.  Abstract and discrete modeling of spatio-temporal data types , 1998, GIS '98.

[32]  E. G. Zurflueh,et al.  Applications of two-dimensional linear wavelength filtering , 1967 .

[33]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.