Mesoscopic Thermodynamics for the Dynamics of Small-Scale Systems

We analyze the mesoscopic dynamics of small-scale systems from the perspective of mesoscopic non-equilibrium thermodynamics. The theory obtains the Fokker–Planck equation as a diffusion equation for the probability density of the mesoscopic variables and the nonlinear relationships between activation rates and affinities proper of activated processes. The situations that can be studied with this formalism include, among others, barrier crossing dynamics and non-linear transport in a great variety of systems. We, in particular, consider the cases of single-molecule stretching and activated processes in small systems.

[1]  Brownian motion in the presence of a temperature gradient , 1994, cond-mat/9505137.

[2]  A. Essig,et al.  Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State , 1983 .

[3]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[4]  J. Rubí,et al.  Fluctuating hydrodynamics approach to chemical reactions , 1997 .

[5]  D. Bedeaux,et al.  Mesoscopic non-equilibrium thermodynamic analysis of molecular motors. , 2013, Physical chemistry chemical physics : PCCP.

[6]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[7]  T. L. Hill,et al.  Free Energy Transduction and Biochemical Cycle Kinetics , 1988, Springer New York.

[8]  Hong Qian,et al.  Phosphorylation energy hypothesis: open chemical systems and their biological functions. , 2007, Annual review of physical chemistry.

[9]  Kramers-type picture for crystal nucleation , 1998, cond-mat/9807285.

[10]  Ilya Prigogine,et al.  Non-equilibrium statistical mechanics , 1962 .

[11]  K. Laidler,et al.  The theory of rate processes : the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena , 1941 .

[12]  Gabriel Gomila,et al.  Relation for the nonequilibrium population of the interface states: Effects on the bias dependence of the ideality factor , 1997 .

[13]  R. Astumian The unreasonable effectiveness of equilibrium theory for interpreting nonequilibrium experiments , 2005, cond-mat/0512024.

[14]  Homogeneous nucleation in inhomogeneous media. I. Nucleation in a temperature gradient , 2003, cond-mat/0309189.

[15]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[16]  S. Kjelstrup,et al.  Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler-Volmer and Nernst Equations , 2003 .

[17]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[18]  J M Rubí,et al.  The mesoscopic dynamics of thermodynamic systems. , 2005, The journal of physical chemistry. B.

[19]  K. Bugaev,et al.  On Thermodynamics of Small Systems , 2005 .

[20]  D. Bedeaux,et al.  Energy dissipation in slipping biological pumps. , 2005, Physical chemistry chemical physics : PCCP.

[21]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[22]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[23]  R. Hentschke Non-Equilibrium Thermodynamics , 2014 .

[24]  D. Bedeaux,et al.  Thermomolecular orientation of nonpolar fluids. , 2012, Physical review letters.

[25]  Fernando Bresme,et al.  Heat transfer in protein-water interfaces. , 2010, Physical chemistry chemical physics : PCCP.

[26]  M. Bellac,et al.  Nonequilibrium statistical mechanics , 2007, Physics Subject Headings (PhySH).

[27]  D. Bedeaux,et al.  Chemical Cycle Kinetics: Removing the Limitation of Linearity of a Non-equilibrium Thermodynamic Description , 2013 .

[28]  Dufty,et al.  Generalized Onsager symmetry. , 1987, Physical review. A, General physics.

[29]  Alessandro Campa,et al.  Thermodynamics of Nonadditive Systems. , 2015, Physical review letters.

[30]  Origin of the violation of the fluctuation–dissipation theorem in systems with activated dynamics , 2002, cond-mat/0210089.

[31]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[32]  Nonequilibrium translational-rotational effects in nucleation , 2001, cond-mat/0109270.

[33]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[34]  D. Bedeaux,et al.  Unifying thermodynamic and kinetic descriptions of single-molecule processes: RNA unfolding under tension. , 2007, The journal of physical chemistry. B.

[35]  Homogeneous nucleation in inhomogeneous media. II. Nucleation in a shear flow , 2003, cond-mat/0309190.

[36]  D. Bedeaux,et al.  Thermodynamics for single-molecule stretching experiments. , 2006, The journal of physical chemistry. B.

[37]  Dick Bedeaux,et al.  Energy Transduction in Biological Systems: A Mesoscopic Non-Equilibrium Thermodynamics Perspective , 2007 .

[38]  J. Vilar,et al.  Failure of the work-Hamiltonian connection for free-energy calculations. , 2007, Physical review letters.

[39]  Simultaneous Brownian motion of N particles in a temperature gradient , 1997, cond-mat/9706077.

[40]  Gaussian noise and time-reversal symmetry in nonequilibrium Langevin models. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Joel Moser,et al.  Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes , 2008, Science.

[42]  J. Vilar,et al.  Thermodynamics “beyond” local equilibrium , 2001, Proceedings of the National Academy of Sciences of the United States of America.