Negative dependence and the geometry of polynomials

We introduce the class of strongly Rayleigh probability measures by means of geometric properties of their generating polynomials that amount to the stability of the latter. This class covers important models such as determinantal measures (e.g. product measures and uniform random spanning tree measures) and distributions for symmetric exclusion processes. We show that strongly Rayleigh measures enjoy all virtues of negative dependence, and we also prove a series of conjectures due to Liggett, Pemantle, and Wagner, respectively. Moreover, we extend Lyons' recent results on determinantal measures, and we construct counterexamples to several conjectures of Pemantle and Wagner on negative dependence and ultra log-concave rank sequences.

[1]  J. Walsh On the location of the roots of certain types of polynomials , 1922 .

[2]  G. Szegö,et al.  Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen , 1922 .

[3]  I. J. Schoenberg,et al.  On the generating functions of totally positive sequences I , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Albert Edrei,et al.  On the Generating Functions of Totally Positive Sequences. , 1951 .

[5]  L. Gårding An Inequality for Hyperbolic Polynomials , 1959 .

[6]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[7]  B. Levin,et al.  Distribution of zeros of entire functions , 1964 .

[8]  David Carlson,et al.  Weakly sign-symmetric matrices and some determinantal inequalities , 1967 .

[9]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[10]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .

[11]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[12]  A. Reddy,et al.  On the distribution of zeros of entire functions , 1974 .

[13]  D. Welsh,et al.  Combinatorial applications of an inequality from statistical mechanics , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Charles M. Newman,et al.  Normal fluctuations and the FKG inequalities , 1980 .

[15]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[16]  Elliott H. Lieb,et al.  A general Lee-Yang theorem for one-component and multicomponent ferromagnets , 1981 .

[17]  S. Chaiken A Combinatorial Proof of the All Minors Matrix Tree Theorem , 1982 .

[18]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .

[19]  Enrique D. Andjel A Correlation Inequality for the Symmetric Exclusion Process , 1988 .

[20]  George Csordas,et al.  Jensen polynomials and the Turán and Laguerre inequalities. , 1989 .

[21]  Peter Volkmann,et al.  Bemerkungen zu einem Satz von Rodé , 1991 .

[22]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[23]  N. Linial,et al.  The influence of variables in product spaces , 1992 .

[24]  R. Pemantle,et al.  Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.

[25]  L. Hörmander Notions of Convexity , 1994 .

[26]  Olle Häggström,et al.  Random-cluster measures and uniform spanning trees , 1995 .

[27]  Devdatt P. Dubhashi,et al.  Negative dependence through the FKG Inequality , 1996 .

[28]  Thomas M. Liggett Ultra Logconcave Sequences and Negative Dependence , 1997, J. Comb. Theory, Ser. A.

[29]  Osman Güler,et al.  Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..

[30]  Desh Ranjan,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[31]  Devdatt P. Dubhashi,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[32]  Charles R. Johnson,et al.  Generalized Matrix Function Inequalities on M‐Matrices , 1998 .

[33]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[34]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[35]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[36]  R. Pemantle Towards a theory of negative dependence , 2000, math/0404095.

[37]  A. Okounkov,et al.  Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram , 2001, math/0107056.

[38]  Olga Holtz Open Problems on Gkk -Matrices , 2001 .

[39]  Heinz H. Bauschke,et al.  Hyperbolic Polynomials and Convex Analysis , 2001, Canadian Journal of Mathematics.

[40]  Russell Lyons,et al.  Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination , 2002 .

[41]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[42]  R. Lyons Determinantal probability measures , 2002, math/0204325.

[43]  Thomas M. Liggett Negative Correlations And Particle Systems , 2002 .

[44]  J. Borcea Spectral order and isotonic differential operators of Laguerre–Pólya type , 2004, math/0404336.

[45]  David G. Wagner,et al.  Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..

[46]  K. Johansson Determinantal Processes with Number Variance Saturation , 2004, math/0404133.

[47]  Olga Holtz M-matrices satisfy Newton's inequalities , 2004, math/0512610.

[48]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[49]  Leonid Gurvits A proof of hyperbolic van der Waerden conjecture : the right generalization is the ultimate simplification , 2005, Electron. Colloquium Comput. Complex..

[50]  David G. Wagner Matroid Inequalities from Electrical Network Theory , 2005, Electron. J. Comb..

[51]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[52]  J. Borcea,et al.  Applications of stable polynomials to mixed determinants: Johnson's conjectures, unimodality, and symmetrized Fischer products , 2006, math/0607755.

[53]  David G. Wagner,et al.  Rayleigh Matroids , 2006, Comb. Probab. Comput..

[54]  P. Brand'en Polynomials with the half-plane property and matroid theory , 2006, math/0605678.

[55]  Desh Ranjan,et al.  Positive Influence and Negative Dependence , 2006, Combinatorics, Probability and Computing.

[56]  Julius Borcea,et al.  Multivariate Pólya–Schur classification problems in the Weyl algebra , 2006, math/0606360.

[57]  J. Borcea,et al.  Polya-Schur master theorems for circular domains and their boundaries , 2006, math/0607416.

[58]  Y. Peres,et al.  Determinantal Processes and Independence , 2005, math/0503110.

[59]  Leonid Gurvits,et al.  Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.

[60]  Petter Brändén,et al.  Classification of hyperbolicity and stability preservers: the multivariate Weyl algebra case , 2006 .

[61]  D. Wagner,et al.  Negatively Correlated Random Variables and Mason’s Conjecture for Independent Sets in Matroids , 2006, math/0602648.

[62]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[63]  Polya-Schur-Lax problems: hyperbolicity and stability preservers , 2007 .

[65]  Bernd Sturmfels,et al.  Hyperdeterminantal relations among symmetric principal minors , 2006, math/0604374.

[66]  Thomas M. Liggett Distributional limits for the symmetric exclusion process , 2007 .

[67]  R. Jackson Inequalities , 2007, Algebra for Parents.

[68]  P. Borwein,et al.  The Riemann Hypothesis , 2008 .

[69]  Charles Semple,et al.  Negative Correlation in Graphs and Matroids , 2008, Comb. Probab. Comput..

[70]  V. K. Jain On the zeros of a polynomial , 2009 .

[71]  Julius Borcea,et al.  The Lee‐Yang and Pólya‐Schur programs. II. Theory of stable polynomials and applications , 2008, 0809.3087.

[72]  J. Borcea,et al.  The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability , 2008, 0809.0401.

[73]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .