Negative dependence and the geometry of polynomials
暂无分享,去创建一个
[1] J. Walsh. On the location of the roots of certain types of polynomials , 1922 .
[2] G. Szegö,et al. Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen , 1922 .
[3] I. J. Schoenberg,et al. On the generating functions of totally positive sequences I , 1951, Proceedings of the National Academy of Sciences of the United States of America.
[4] Albert Edrei,et al. On the Generating Functions of Totally Positive Sequences. , 1951 .
[5] L. Gårding. An Inequality for Hyperbolic Polynomials , 1959 .
[6] F. Gantmacher,et al. Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .
[7] B. Levin,et al. Distribution of zeros of entire functions , 1964 .
[8] David Carlson,et al. Weakly sign-symmetric matrices and some determinantal inequalities , 1967 .
[9] J. Cooper. TOTAL POSITIVITY, VOL. I , 1970 .
[10] M. Atiyah,et al. Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .
[11] C. Fortuin,et al. Correlation inequalities on some partially ordered sets , 1971 .
[12] A. Reddy,et al. On the distribution of zeros of entire functions , 1974 .
[13] D. Welsh,et al. Combinatorial applications of an inequality from statistical mechanics , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] Charles M. Newman,et al. Normal fluctuations and the FKG inequalities , 1980 .
[15] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[16] Elliott H. Lieb,et al. A general Lee-Yang theorem for one-component and multicomponent ferromagnets , 1981 .
[17] S. Chaiken. A Combinatorial Proof of the All Minors Matrix Tree Theorem , 1982 .
[18] K. Joag-dev,et al. Negative Association of Random Variables with Applications , 1983 .
[19] Enrique D. Andjel. A Correlation Inequality for the Symmetric Exclusion Process , 1988 .
[20] George Csordas,et al. Jensen polynomials and the Turán and Laguerre inequalities. , 1989 .
[21] Peter Volkmann,et al. Bemerkungen zu einem Satz von Rodé , 1991 .
[22] Tomás Feder,et al. Balanced matroids , 1992, STOC '92.
[23] N. Linial,et al. The influence of variables in product spaces , 1992 .
[24] R. Pemantle,et al. Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.
[25] L. Hörmander. Notions of Convexity , 1994 .
[26] Olle Häggström,et al. Random-cluster measures and uniform spanning trees , 1995 .
[27] Devdatt P. Dubhashi,et al. Negative dependence through the FKG Inequality , 1996 .
[28] Thomas M. Liggett. Ultra Logconcave Sequences and Negative Dependence , 1997, J. Comb. Theory, Ser. A.
[29] Osman Güler,et al. Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..
[30] Desh Ranjan,et al. Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.
[31] Devdatt P. Dubhashi,et al. Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.
[32] Charles R. Johnson,et al. Generalized Matrix Function Inequalities on M‐Matrices , 1998 .
[33] G. Olshanski,et al. Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.
[34] T. Liggett,et al. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .
[35] K. Johansson. Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.
[36] R. Pemantle. Towards a theory of negative dependence , 2000, math/0404095.
[37] A. Okounkov,et al. Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram , 2001, math/0107056.
[38] Olga Holtz. Open Problems on Gkk -Matrices , 2001 .
[39] Heinz H. Bauschke,et al. Hyperbolic Polynomials and Convex Analysis , 2001, Canadian Journal of Mathematics.
[40] Russell Lyons,et al. Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination , 2002 .
[41] Q. I. Rahman,et al. Analytic theory of polynomials , 2002 .
[42] R. Lyons. Determinantal probability measures , 2002, math/0204325.
[43] Thomas M. Liggett. Negative Correlations And Particle Systems , 2002 .
[44] J. Borcea. Spectral order and isotonic differential operators of Laguerre–Pólya type , 2004, math/0404336.
[45] David G. Wagner,et al. Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..
[46] K. Johansson. Determinantal Processes with Number Variance Saturation , 2004, math/0404133.
[47] Olga Holtz. M-matrices satisfy Newton's inequalities , 2004, math/0512610.
[48] Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.
[49] Leonid Gurvits. A proof of hyperbolic van der Waerden conjecture : the right generalization is the ultimate simplification , 2005, Electron. Colloquium Comput. Complex..
[50] David G. Wagner. Matroid Inequalities from Electrical Network Theory , 2005, Electron. J. Comb..
[51] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[52] J. Borcea,et al. Applications of stable polynomials to mixed determinants: Johnson's conjectures, unimodality, and symmetrized Fischer products , 2006, math/0607755.
[53] David G. Wagner,et al. Rayleigh Matroids , 2006, Comb. Probab. Comput..
[54] P. Brand'en. Polynomials with the half-plane property and matroid theory , 2006, math/0605678.
[55] Desh Ranjan,et al. Positive Influence and Negative Dependence , 2006, Combinatorics, Probability and Computing.
[56] Julius Borcea,et al. Multivariate Pólya–Schur classification problems in the Weyl algebra , 2006, math/0606360.
[57] J. Borcea,et al. Polya-Schur master theorems for circular domains and their boundaries , 2006, math/0607416.
[58] Y. Peres,et al. Determinantal Processes and Independence , 2005, math/0503110.
[59] Leonid Gurvits,et al. Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.
[60] Petter Brändén,et al. Classification of hyperbolicity and stability preservers: the multivariate Weyl algebra case , 2006 .
[61] D. Wagner,et al. Negatively Correlated Random Variables and Mason’s Conjecture for Independent Sets in Matroids , 2006, math/0602648.
[62] Geoffrey Grimmett. The Random-Cluster Model , 2002, math/0205237.
[63] Polya-Schur-Lax problems: hyperbolicity and stability preservers , 2007 .
[65] Bernd Sturmfels,et al. Hyperdeterminantal relations among symmetric principal minors , 2006, math/0604374.
[66] Thomas M. Liggett. Distributional limits for the symmetric exclusion process , 2007 .
[67] R. Jackson. Inequalities , 2007, Algebra for Parents.
[68] P. Borwein,et al. The Riemann Hypothesis , 2008 .
[69] Charles Semple,et al. Negative Correlation in Graphs and Matroids , 2008, Comb. Probab. Comput..
[70] V. K. Jain. On the zeros of a polynomial , 2009 .
[71] Julius Borcea,et al. The Lee‐Yang and Pólya‐Schur programs. II. Theory of stable polynomials and applications , 2008, 0809.3087.
[72] J. Borcea,et al. The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability , 2008, 0809.0401.
[73] Stefan Grosskinsky Warwick,et al. Interacting Particle Systems , 2016 .