Bewegungsalgorithmen für zweibeinige Roboter ohne Oberkörper (Path Planning Algorithms for Bipedal Robots without a Trunk)

Abstract Dieser Artikel stellt neue Algorithmen zur Bahnplanung zweibeiniger Roboter vor. Hierbei dienen die Beintrajektorien sowohl der Fortbewegung als auch der Stabilität. Es gelingt der Brückenschlag zwischen dem Konzept des Inversen Pendels (IPM) und den Verfahren auf Basis eines verallgemeinerten dynamischen Modells. Simulationen und Messungen der Fußreaktionskräfte während des Laufvorganges des realen Roboters BARt-UH verifizieren die Eignung der vorgestellten Verfahren.

[1]  M Vukobratović,et al.  On the stability of biped locomotion. , 1970, IEEE transactions on bio-medical engineering.

[2]  Shuuji Kajita,et al.  Experimental study of biped dynamic walking in the linear inverted pendulum mode , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[3]  Andrew L. Kun,et al.  Control of variable speed gaits for a biped robot , 1999, IEEE Robotics Autom. Mag..

[4]  Atsuo Takanishi,et al.  Development of a Leg Part of a Humanoid Robot—Development of a Biped Walking Robot Adapting to the Humans' Normal Living Floor , 1997, Auton. Robots.

[5]  Jong H. Park,et al.  Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[6]  Atsuo Kawamura,et al.  Three dimensional digital simulation and autonomous walking control for eight-axis biped robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[7]  Jong H. Park,et al.  ZMP trajectory generation for reduced trunk motions of biped robots , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[8]  Kazuo Hirai,et al.  Current and future perspective of Honda humamoid robot , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[9]  Jong Hyeon Park,et al.  An online trajectory modifier for the base link of biped robots to enhance locomotion stability , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[11]  Yuan F. Zheng,et al.  How many degrees-of-freedom does a biped need? , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[12]  Amos Albert Climbing of Stairs of an Autonomous, Bipedal Robot , 2000 .

[13]  Yoshihiko Nakamura,et al.  Making feasible walking motion of humanoid robots from human motion capture data , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).