Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations

We study heat conduction in $(n,0)∕(2n,0)$ intramolecular junctions by using molecular dynamics method. It is found that the heat conduction is asymmetric, namely, heat transports preferably in one direction. This phenomenon is also called thermal rectification. The rectification is weakly dependent on the detailed structure of connection part but is strongly dependent on the temperature gradient. We also study the effect of the tube radius and intramolecular junction length on the rectification. Our study shows that the tensile stress can increase rectification. The physical mechanism of the rectification is explained.

[1]  Baowen Li,et al.  Negative differential thermal resistance and thermal transistor , 2006 .

[2]  Baowen Li,et al.  Thermal conduction of carbon nanotubes using molecular dynamics , 2005 .

[3]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[4]  Baowen Li,et al.  Thermal rectification and negative differential thermal resistance in lattices with mass gradient , 2007, 0707.0977.

[5]  M. Grujicic,et al.  Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes , 2005 .

[6]  M. Monthioux,et al.  Encapsulated C60 in carbon nanotubes , 1998, Nature.

[7]  Nonequilibrium Green’s function approach to mesoscopic thermal transport , 2006, cond-mat/0605028.

[8]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[9]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[10]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[11]  Shigeo Maruyama,et al.  Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations , 2006 .

[12]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[13]  N. Mingo,et al.  Length dependence of carbon nanotube thermal conductivity and the "problem of long waves". , 2005, Nano letters.

[14]  T. Choi,et al.  Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method , 2006 .

[15]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[16]  Bambi Hu,et al.  Asymmetric heat conduction in nonlinear lattices. , 2006, Physical review letters.

[17]  Riichiro Saito,et al.  Raman intensity of single-wall carbon nanotubes , 1998 .

[18]  Jian Wang,et al.  Carbon nanotube thermal transport: Ballistic to diffusive , 2005 .

[19]  Chirality dependence of the thermal conductivity of carbon nanotubes , 2004 .

[20]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[21]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[22]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[23]  N. Mingo,et al.  Carbon nanotube ballistic thermal conductance and its limits. , 2005, Physical review letters.

[24]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[25]  Shigeo Maruyama,et al.  A molecular dynamics simulation of heat conduction in finite length SWNTs , 2002 .

[26]  S. Maruyama A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE , 2003 .

[27]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[28]  N. G. Mensah,et al.  Temperature dependence of the thermal conductivity in chiral carbon nanotubes , 2004 .

[29]  P. Lambin,et al.  Scanning tunneling spectroscopy signature of finite-size and connected nanotubes: A tight-binding study , 1999 .

[30]  D. Srivastava,et al.  Thermal conductivity of carbon nanotube peapods , 2004 .

[31]  Gang Zhang,et al.  Anomalous vibrational energy diffusion in carbon nanotubes. , 2005, The Journal of chemical physics.

[32]  R. Batra,et al.  Macroscopic properties of carbon nanotubes from molecular-mechanics simulations , 2004 .

[33]  M. Geller,et al.  Thermal transport through a mesoscopic weak link , 2001, cond-mat/0101045.

[34]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[35]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[36]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[37]  Wall "thickness" effects on Raman spectrum shift, thermal conductivity, and Young's modulus of single-walled nanotubes. , 2004, The journal of physical chemistry. B.

[38]  M. Anantram,et al.  Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions , 1998 .

[39]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[40]  S. Okada,et al.  Energetics and electronic structures of encapsulated C60 in a carbon nanotube. , 2001, Physical review letters.

[41]  Interface thermal resistance between dissimilar anharmonic lattices. , 2005, Physical review letters.

[42]  Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. , 2005, The Journal of chemical physics.

[43]  Baowen Li,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[44]  Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. , 2004, Chaos.

[45]  Gangshan Wu,et al.  Raman characteristic peaks induced by the topological defects of carbon nanotube intramolecular junctions , 2006, 0707.4340.

[46]  Dunlap,et al.  Relating carbon tubules. , 1994, Physical review. B, Condensed matter.

[47]  A. Majumdar,et al.  Isotope effect on the thermal conductivity of boron nitride nanotubes. , 2006, Physical review letters.

[48]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[49]  M. Dresselhaus,et al.  Tunneling conductance of connected carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[50]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[51]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.