Coplanar Full Adder in Quantum-Dot Cellular Automata via Clock-Zone-Based Crossover

We use a coplanar QCA crossover architecture in the design of QCA full adders that leads to reduction of QCA cell count and area consumption without any latency penalty. This crossover uses non-adjacent clock zones for the two crossing wires. We further investigate the impact of these gains on carry flow QCA adders. These designs have been realized with QCADesigner, evaluated, and tested for correctness. For better performance comparison with previous relevant works, we use a QCA-specific cost function, as well as the conventional evaluation method. We show 23% cell count and 48% area improvements over the best previous QCA full adder design. Similar results for 4-, 8-, 16-, 32-, and 64-bit adders are 29% (22%), 24% (51%), 19% (54%), 13% (69%), and 9% (49%) cell count reduction (less area consumption), respectively.

[1]  Graham A. Jullien,et al.  Design Tools for an Emerging SoC Technology: Quantum-Dot Cellular Automata , 2006, Proceedings of the IEEE.

[2]  Earl E. Swartzlander,et al.  Computer arithmetic implemented with QCA: A progress report , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[3]  Ismo Hänninen,et al.  Robust Adders Based on Quantum-Dot Cellular Automata , 2007, 2007 IEEE International Conf. on Application-specific Systems, Architectures and Processors (ASAP).

[4]  P. D. Tougaw,et al.  AN ALTERNATIVE GEOMETRY FOR QUANTUM-DOT CELLULAR AUTOMATA , 1999 .

[5]  Kee-Young Yoo,et al.  Wire-Crossing Technique on Quantum-Dot Cellular Automata , 2013 .

[6]  Stefania Perri,et al.  Area-Delay Efficient Binary Adders in QCA , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Wei Wang,et al.  Performance Comparison of Quantum-dot Cellular , 2005 .

[8]  Mostafa Rahimi Azghadi,et al.  A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders , 2007, ArXiv.

[9]  Gary H. Bernstein,et al.  Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors , 2003 .

[10]  Michael T. Niemier,et al.  Fabricatable Interconnect and Molecular QCA Circuits , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  K. Sridharan,et al.  Low Complexity Design of Ripple Carry and Brent–Kung Adders in QCA , 2012, IEEE Transactions on Nanotechnology.

[12]  Jing Huang,et al.  Defect characterization for scaling of QCA devices [quantum dot cellular automata ] , 2004 .

[13]  Dariush Abedi,et al.  Design a Collector with More Reliability against Defects during Manufacturing in Nanometer Technology, QCA , 2013 .

[14]  Fabrizio Lombardi,et al.  Modeling QCA defects at molecular-level in combinational circuits , 2005, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05).

[15]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[16]  M. Balakrishnan,et al.  Coplanar QCA crossovers , 2009 .

[17]  Marco Vacca,et al.  Emerging Technologies - NanoMagnets Logic (NML) , 2013 .

[18]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[19]  G H Bernstein,et al.  Nanomagnet logic: progress toward system-level integration , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Craig S. Lent,et al.  Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics , 2007 .

[21]  Keivan Navi,et al.  Coplanar wire crossing in quantum cellular automata using a ternary cell , 2013, IET Circuits Devices Syst..

[22]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[23]  Bahniman Ghosh,et al.  Ripple carry adder using five input majority gates , 2012 .

[24]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[25]  Earl E. Swartzlander,et al.  A First Step Toward Cost Functions for Quantum-Dot Cellular Automata Designs , 2014, IEEE Transactions on Nanotechnology.

[26]  Michael T. Niemier,et al.  Molecular QCA design with chemically reasonable constraints , 2008, JETC.

[27]  Vassil S. Dimitrov,et al.  Computer arithmetic structures for quantum cellular automata , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[28]  Yong-bin Kim,et al.  Challenges for Nanoscale MOSFETs and Emerging Nanoelectronics , 2010 .

[29]  Dieter P. Kern,et al.  Towards quantum cellular automata operation in silicon: transport properties of silicon multiple dot structures , 2000 .

[30]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[31]  Earl E. Swartzlander,et al.  Adder and Multiplier Design in Quantum-Dot Cellular Automata , 2009, IEEE Transactions on Computers.

[32]  New Decomposition Theorems on Majority Logic for Low-Delay Adder Designs in Quantum Dot Cellular Automata , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[33]  Peter M. Kogge,et al.  Probabilistic Analysis of a Molecular Quantum-Dot Cellular Automata Adder , 2007, 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007).