High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment.

The 70 kDa soluble lytic transglycosylase (Slt70) from Escherichia coli is an exo-muramidase, that catalyses the cleavage of the glycosidic bonds between N -acetylmuramic acid and N -acetylglucosamine residues in peptidoglycan, the main structural component of the bacterial cell wall. This cleavage is accompanied by the formation of a 1,6-anhydro bond between the C1 and O6 atoms in the N -acetylmuramic acid residue (anhMurNAc). Crystallographic studies at medium resolution revealed that Slt70 is a multi-domain protein consisting of a large ring-shaped alpha-superhelix with on top a catalytic domain, which resembles the fold of goose-type lysozyme. Here we report the crystal structures of native Slt70 and of its complex with a 1,6-anhydromuropeptide solved at nominal resolutions of 1.65 A and 1.90 A, respectively. The high resolution native structure reveals the details on the hydrogen bonds, electrostatic and hydrophobic interactions that stabilise the catalytic domain and the alpha-superhelix. The building-block of the alpha-superhelix is an "up-down-up-down" four-alpha-helix bundle involving both parallel and antiparallel helix pairs. Stabilisation of the fold is provided through an extensive packing of apolar atoms, mostly from leucine and alanine residues. It lacks, however, an internal consensus sequence that characterises other super-secondary helical folds like the beta-helix in pectate lyase or the (beta-alpha)-helix in the ribonuclease inhibitor. The 1, 6-anhydromuropeptide product binds in a shallow groove adjacent to the peptidoglycan-binding groove of the catalytic domain. The groove is formed by conserved residues at the interface of the catalytic domain and the alpha-superhelix. The structure of the Slt70-1, 6-anhydromuropeptide complex confirms the presence of a specific binding-site for the peptide moieties of the peptidoglycan and it substantiates the notion that Slt70 starts the cleavage reaction at the anhMurNAc end of the peptidoglycan.

[1]  F. S. Mathews,et al.  Refined structure of cytochrome b562 from Escherichia coli at 1.4 A resolution. , 1995, Journal of molecular biology.

[2]  Bostjan Kobe,et al.  Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats , 1993, Nature.

[3]  David R. Rose,et al.  Mechanism of catalysis by retaining β-glycosyl hydrolases , 1997 .

[4]  Frank Eisenhaber,et al.  Improved strategy in analytic surface calculation for molecular systems: Handling of singularities and computational efficiency , 1993, J. Comput. Chem..

[5]  K. H. Kalk,et al.  Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography , 1994, Nature.

[6]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[7]  D. Kilburn,et al.  Multiple domains in endoglucanase B (CenB) from Cellulomonas fimi: functions and relatedness to domains in other polypeptides , 1991, Journal of bacteriology.

[8]  M. Templin,et al.  Cloning and expression of a murein hydrolase lipoprotein from Escherichia coli , 1995, Molecular microbiology.

[9]  A. Golubev,et al.  Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution. , 1994, The Journal of biological chemistry.

[10]  W. Hol,et al.  3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin , 1984, Nature.

[11]  W. Vollmer,et al.  Characterization of three different lytic transglycosylases in Escherichia coli. , 1993, FEMS microbiology letters.

[12]  Scott R. Presnell,et al.  Topological distribution of four-alpha-helix bundles. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[13]  U. Schwarz,et al.  Novel type of murein transglycosylase in Escherichia coli , 1975, Journal of bacteriology.

[14]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[15]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[16]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[17]  U. Schwarz,et al.  Autolytic enzymes and cell division of Escherichia coli. , 1969, Journal of molecular biology.

[18]  D. Purdy,et al.  Structures and mechanisms , 1984 .

[19]  B. Kobe,et al.  Turn up the HEAT. , 1999, Structure.

[20]  E. Goodell Recycling of murein by Escherichia coli , 1985, Journal of bacteriology.

[21]  L. Dijkhuizen,et al.  Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. , 1994, Journal of molecular biology.

[22]  C Chothia,et al.  Surface, subunit interfaces and interior of oligomeric proteins. , 1988, Journal of molecular biology.

[23]  D. Levitt,et al.  The structural basis of lipid interactions in lipovitellin, a soluble lipoprotein. , 1998, Structure.

[24]  L. Johannsen Biological properties of bacterial peptidoglycan , 1993, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[25]  J. Höltje Molecular interplay of murein synthases and murein hydrolases in Escherichia coli. , 1996, Microbial drug resistance.

[26]  J. Höltje,et al.  Purification and properties of a membrane-bound lytic transglycosylase from Escherichia coli , 1994, Journal of bacteriology.

[27]  W. Vollmer,et al.  Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli , 1997, Journal of bacteriology.

[28]  C. Sander,et al.  Errors in protein structures , 1996, Nature.

[29]  Stephen A. Martin,et al.  Peptidoglycans as promoters of slow-wave sleep. I. Structure of the sleep-promoting factor isolated from human urine. , 1984, The Journal of biological chemistry.

[30]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[31]  K. H. Kalk,et al.  Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. , 1995, Biochemistry.

[32]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[33]  D. H. Edwards,et al.  A murein hydrolase is the specific target of bulgecin in Escherichia coli. , 1992, The Journal of biological chemistry.

[34]  Z. A. McGee,et al.  Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. , 1984, The Journal of infectious diseases.

[35]  J. Höltje,et al.  Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. , 1996, Microbial drug resistance.

[36]  M. Kokkinidis,et al.  Relationships between sequence and structure for the four-alpha-helix bundle tertiary motif in proteins. , 1992, Protein engineering.

[37]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[38]  B. Kobe Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α , 1999, Nature Structural Biology.

[39]  W Keck,et al.  Peptidoglycan as a barrier to transenvelope transport , 1996, Journal of bacteriology.

[40]  E. Vellenga,et al.  G(Anh)MTetra, a natural bacterial cell wall breakdown product, induces interleukin-1 beta and interleukin-6 expression in human monocytes. A study of the molecular mechanisms involved in inflammatory cytokine expression. , 1994, The Journal of biological chemistry.

[41]  B. Kazemier,et al.  Murein-metabolizing enzymes from Escherichia coli: sequence analysis and controlled overexpression of the slt gene, which encodes the soluble lytic transglycosylase , 1991, Journal of bacteriology.

[42]  C. Müller,et al.  Structure of importin-β bound to the IBB domain of importin-α , 1999, Nature.

[43]  B. Dijkstra,et al.  Crystallization of the soluble lytic transglycosylase from Escherichia coli K12. , 1990, Journal of molecular biology.

[44]  C. Chothia Principles that determine the structure of proteins. , 1984, Annual review of biochemistry.

[45]  J. Strominger,et al.  Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. , 1983, Annual review of biochemistry.

[46]  M. Yoder,et al.  Unusual structural features in the parallel β-helix in pectate lyases , 1993 .

[47]  Markus F. Templin,et al.  Membrane-Bound Lytic Endotransglycosylase inEscherichia coli , 1998, Journal of bacteriology.

[48]  F. R. Salemme,et al.  Structural and functional diversity in 4-α-helical proteins , 1980, Nature.

[49]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[50]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[51]  J. Thornton,et al.  Stereochemical quality of protein structure coordinates , 1992, Proteins.

[52]  Wim G. J. Hol,et al.  The role of the α-helix dipole in protein function and structure , 1985 .

[53]  C. Chothia,et al.  Helix to helix packing in proteins. , 1981, Journal of molecular biology.

[54]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[55]  P. Alzari,et al.  Three-dimensional structure of a thermostable bacterial cellulase , 1992, Nature.

[56]  J. Höltje,et al.  Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[57]  N. Isaacs,et al.  The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes , 1995, Proteins.

[58]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[59]  G J Barton,et al.  ALSCRIPT: a tool to format multiple sequence alignments. , 1993, Protein engineering.

[60]  W. Goldman,et al.  Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis , 1989, Infection and immunity.

[61]  T. Romeis,et al.  Murein chemistry of cell division in Escherichia coli. , 1991, Research in microbiology.

[62]  B. Walderich,et al.  Subcellular distribution of the soluble lytic transglycosylase in Escherichia coli , 1991, Journal of bacteriology.

[63]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[64]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[65]  J. Höltje,et al.  Analysis of murein and murein precursors during antibiotic-induced lysis of Escherichia coli , 1991, Journal of bacteriology.

[66]  A. Dijkstra The lytic transglycosylase family of Escherichia coli : in vitro activity versus in vivo function , 1997 .

[67]  P. Casey,et al.  Crystal Structure of Protein Farnesyltransferase at 2.25 Angstrom Resolution , 1997, Science.

[68]  G. Shockman Microbial peptidoglycan (murein) hydrolases , 1994 .

[69]  R. Huber,et al.  The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. , 1990, The EMBO journal.

[70]  U. Baumann,et al.  Three‐dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two‐domain protein with a calcium binding parallel beta roll motif. , 1993, The EMBO journal.

[71]  B. Henrissat,et al.  Structures and mechanisms of glycosyl hydrolases. , 1995, Structure.

[72]  Francis Hermann,et al.  Cloning and controlled overexpression of the gene encoding the 35 kDa soluble lytic transglycosylase from Escherichia coli , 1995, FEBS letters.

[73]  M. de Pedro,et al.  Exoenzymatic activity of transglycosylase isolated from Escherichia coli. , 1981, European journal of biochemistry.

[74]  J. Thornton,et al.  PROMOTIF—A program to identify and analyze structural motifs in proteins , 1996, Protein science : a publication of the Protein Society.

[75]  Brian A. Hemmings,et al.  The Structure of the Protein Phosphatase 2A PR65/A Subunit Reveals the Conformation of Its 15 Tandemly Repeated HEAT Motifs , 1999, Cell.

[76]  William I. Weis,et al.  Three-Dimensional Structure of the Armadillo Repeat Region of β-Catenin , 1997, Cell.

[77]  L. Kroon-Batenburg,et al.  Conformational analysis and computer modelling of muramic acid δ-lactam structures , 1994 .

[78]  B. Matthews,et al.  A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. , 1993, Science.

[79]  EisenhaberFrank,et al.  Improved strategy in analytic surface calculation for molecular systems , 1993 .