Dual-ion batteries: The emerging alternative rechargeable batteries

[1]  Bingan Lu,et al.  Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor , 2020, Journal of Energy Chemistry.

[2]  Hui‐Ming Cheng,et al.  Strategien für kostengünstige und leistungsstarke Dual‐Ionen‐Batterien , 2020 .

[3]  Hui‐Ming Cheng,et al.  Beyond Conventional Batteries: Strategies towards Low-Cost Dual-Ion Batteries with High Performance. , 2019, Angewandte Chemie.

[4]  Bingan Lu,et al.  Unzipped carbon nanotubes for aluminum battery , 2019 .

[5]  G. Cui,et al.  A high concentration electrolyte enables superior cycleability and rate capability for high voltage dual graphite battery , 2019, Journal of Power Sources.

[6]  He Yang,et al.  Integrated Co3O4/carbon fiber paper for high-performance anode of dual-ion battery , 2019, Journal of Energy Chemistry.

[7]  M. Winter,et al.  Unravelling charge/discharge and capacity fading mechanisms in dual-graphite battery cells using an electron inventory model , 2019, Energy Storage Materials.

[8]  M. Kovalenko,et al.  Rechargeable Dual‐Ion Batteries with Graphite as a Cathode: Key Challenges and Opportunities , 2019, Advanced Energy Materials.

[9]  P. He,et al.  A Dual-Ion Organic Symmetric Battery Constructed from Phenazine-Based Artificial Bipolar Molecules. , 2019, Angewandte Chemie.

[10]  Li Li,et al.  Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 5,7,12,14-pentacenetetrone from a pure ionic liquid electrolyte for dual-ion batteries. , 2019, Chemical communications.

[11]  D. Yu,et al.  Joint Theoretical and Experimental Study on the Effects of the Salts in the Graphite-Based Dual-Ion Batteries , 2019, The Journal of Physical Chemistry C.

[12]  Zaiping Guo,et al.  Recent progress and perspectives on dual-ion batteries , 2019, EnergyChem.

[13]  M. Yoshio,et al.  Facilitating Tetrafluoroborate Intercalation into Graphite Electrodes from Ethylmethyl Carbonate‐Based Solutions , 2019, ChemElectroChem.

[14]  Jianli Cheng,et al.  A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode , 2019, Nano Energy.

[15]  Shuang Li,et al.  Phase evolution of conversion-type electrode for lithium ion batteries , 2019, Nature Communications.

[16]  Weihua Chen,et al.  Electrolytes for Dual‐Carbon Batteries , 2019, ChemElectroChem.

[17]  Xiaogang Zhang,et al.  A novel aqueous ammonium dual-ion battery based on organic polymers , 2019, Journal of Materials Chemistry A.

[18]  Kang Xu,et al.  Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite , 2019, Nature.

[19]  J. Zapien,et al.  Sodium‐Ion Hybrid Battery Combining an Anion‐Intercalation Cathode with an Adsorption‐Type Anode for Enhanced Rate and Cycling Performance , 2019, Batteries & Supercaps.

[20]  Jun Lu,et al.  An Aqueous Dual-Ion Battery Cathode of Mn3 O4 via Reversible Insertion of Nitrate. , 2019, Angewandte Chemie.

[21]  David G. Mackanic,et al.  Designing polymers for advanced battery chemistries , 2019, Nature Reviews Materials.

[22]  Jun Lu,et al.  Reverse Dual-Ion Battery via a ZnCl2 Water-in-Salt Electrolyte. , 2019, Journal of the American Chemical Society.

[23]  G. Cui,et al.  An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dual‐Ion Batteries , 2019, Advanced Energy Materials.

[24]  Xiaodong Li,et al.  In−situ preparation of ultrathin graphdiyne layer decorated aluminum foil with improved cycling stability for dual−ion batteries , 2019, Carbon.

[25]  Dipan Kundu,et al.  An Organic Cathode Based Dual-Ion Aqueous Zinc Battery Enabled by a Cellulose Membrane , 2019, ACS Applied Energy Materials.

[26]  Lei Zhang,et al.  Flame-Retardant Electrolyte Solution for Dual-Ion Batteries , 2019, ACS Applied Energy Materials.

[27]  Xiaohe Song,et al.  Rechargeable batteries based on anion intercalation graphite cathodes , 2019, Energy Storage Materials.

[28]  Zi-Feng Ma,et al.  Past and Present of LiFePO4: From Fundamental Research to Industrial Applications , 2019, Chem.

[29]  D. Campbell-Lendrum,et al.  Climate change, air pollution and noncommunicable diseases , 2018, Bulletin of the World Health Organization.

[30]  Yang Yang,et al.  Highly Improved Cycling Stability of Anion De‐/Intercalation in the Graphite Cathode for Dual‐Ion Batteries , 2018, Advanced materials.

[31]  João Coelho,et al.  Quantifying the factors limiting rate performance in battery electrodes , 2018, Nature Communications.

[32]  M. Winter,et al.  Reversible Anion Storage in a Metal-Organic Framework for Dual-Ion Battery Systems , 2019, Journal of The Electrochemical Society.

[33]  M. Winter,et al.  Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries , 2018, Joule.

[34]  P. Chu,et al.  Hierarchical MoS 2 @N‐Doped Carbon Hollow Spheres with Enhanced Performance in Sodium Dual‐Ion Batteries , 2018, ChemElectroChem.

[35]  M. Winter,et al.  Before Li Ion Batteries. , 2018, Chemical reviews.

[36]  J. Ge,et al.  Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries , 2018, Energy Storage Materials.

[37]  F. Kang,et al.  A novel graphite-based dual ion battery using PP14NTF2 ionic liquid for preparing graphene structure , 2018, Carbon.

[38]  Huakun Liu,et al.  Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties , 2018, Energy Storage Materials.

[39]  M. Kovalenko,et al.  High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide , 2018, Nature Communications.

[40]  Xu Han,et al.  Low Cost and Superior Safety Industrial Grade Lithium Dual-Ion Batteries with a Second Life , 2018, Energy Technology.

[41]  Fan Zhang,et al.  Lithium Metal Extraction from Seawater , 2018, Joule.

[42]  Feng Wu,et al.  Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries , 2018, Electrochimica Acta.

[43]  M. Winter,et al.  A route towards understanding the kinetic processes of bis(trifluoromethanesulfonyl) imide anion intercalation into graphite for dual-ion batteries , 2018, Electrochimica Acta.

[44]  Gang Wang,et al.  Polarity‐Switchable Symmetric Graphite Batteries with High Energy and High Power Densities , 2018, Advanced materials.

[45]  V. Thangadurai,et al.  Engineering Materials for Progressive All-Solid-State Na Batteries , 2018, ACS Energy Letters.

[46]  Bingan Lu,et al.  Carbon Nanoscrolls for Aluminum Battery. , 2018, ACS nano.

[47]  Fan Zhang,et al.  A Flexible Dual‐Ion Battery Based on PVDF‐HFP‐Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability , 2018, Advanced Energy Materials.

[48]  Hailiang Wang,et al.  High-Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. , 2018, Angewandte Chemie.

[49]  R. J. Gummow,et al.  Calcium‐Ion Batteries: Current State‐of‐the‐Art and Future Perspectives , 2018, Advanced materials.

[50]  Yongbing Tang,et al.  A Review on the Features and Progress of Dual‐Ion Batteries , 2018 .

[51]  Y. Bando,et al.  Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes , 2018 .

[52]  Shin-ichi Nishimura,et al.  Polyanionic Insertion Materials for Sodium‐Ion Batteries , 2018 .

[53]  Bingan Lu,et al.  An Ultrafast Rechargeable Hybrid Sodium‐Based Dual‐Ion Capacitor Based on Hard Carbon Cathodes , 2018 .

[54]  Chunsheng Wang,et al.  Progress in Aqueous Rechargeable Sodium‐Ion Batteries , 2018 .

[55]  Xianhua Hou,et al.  Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry , 2018 .

[56]  O. Borodin,et al.  A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries , 2018 .

[57]  M. Winter,et al.  New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of the graphitization degree , 2018 .

[58]  Xiaodong Zhuang,et al.  Self‐Activating, Capacitive Anion Intercalation Enables High‐Power Graphite Cathodes , 2018, Advanced materials.

[59]  Ling Fan,et al.  A Nonaqueous Potassium‐Based Battery–Supercapacitor Hybrid Device , 2018, Advanced materials.

[60]  Ji‐Guang Zhang,et al.  High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes , 2018, Advanced materials.

[61]  Yong Lei,et al.  Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries , 2018, Nature Communications.

[62]  Fan Zhang,et al.  A Novel Calcium‐Ion Battery Based on Dual‐Carbon Configuration with High Working Voltage and Long Cycling Life , 2018, Advanced science.

[63]  Sheng Cheng,et al.  A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. , 2018, Chemical communications.

[64]  Hui‐Ming Cheng,et al.  Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage , 2018, Nature Chemistry.

[65]  Qing Jiang,et al.  High-Energy-Density Flexible Potassium-Ion Battery Based on Patterned Electrodes , 2018 .

[66]  Yong Qin,et al.  Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries. , 2018, ACS applied materials & interfaces.

[67]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[68]  Clement Bommier,et al.  Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes. , 2018, Small.

[69]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[70]  S. Jiao,et al.  Room temperature solid state dual-ion batteries based on gel electrolytes , 2018 .

[71]  Bingan Lu,et al.  A novel aluminum dual-ion battery , 2018 .

[72]  Kirk R. Smith,et al.  Household air pollution, health, and climate change: cleaning the air , 2018 .

[73]  D. Yu,et al.  Designing high-power graphite-based dual-ion batteries , 2018 .

[74]  C. Grey,et al.  Exfoliation of Layered Na-Ion Anode Material Na2Ti3O7 for Enhanced Capacity and Cyclability , 2018, 1805.03091.

[75]  M. Whittingham,et al.  Can Multielectron Intercalation Reactions Be the Basis of Next Generation Batteries? , 2018, Accounts of chemical research.

[76]  Huaiguo Xue,et al.  Hierarchically Nanostructured Transition Metal Oxides for Lithium‐Ion Batteries , 2018, Advanced science.

[77]  M. Winter,et al.  Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes , 2018 .

[78]  G. Cao,et al.  FUNDAMENTALS OF RECHARGEABLE BATTERIES AND ELECTROCHEMICAL POTENTIALS OF ELECTRODE MATERIALS , 2018 .

[79]  Chao Gao,et al.  Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life , 2017, Science Advances.

[80]  Won‐Jin Kwak,et al.  Controversial Topics on Lithium Superoxide in Li–O2 Batteries , 2017 .

[81]  M. Winter,et al.  Alternative electrochemical energy storage: potassium-based dual-graphite batteries , 2017 .

[82]  Haoshen Zhou,et al.  Solar energy storage in the rechargeable batteries , 2017 .

[83]  Jun Lu,et al.  A novel coronene//Na2Ti3O7 dual-ion battery , 2017 .

[84]  Arumugam Manthiram,et al.  An Outlook on Lithium Ion Battery Technology , 2017, ACS central science.

[85]  Ji Chen,et al.  4.0 V Aqueous Li-Ion Batteries , 2017 .

[86]  Yongbing Tang,et al.  Multifunctional Electrode Design Consisting of 3D Porous Separator Modulated with Patterned Anode for High‐Performance Dual‐Ion Batteries , 2017 .

[87]  Hongyu Wang,et al.  Intercalation Behavior of Hexafluorophosphate into Graphite Electrode from Propylene/Ethylmethyl Carbonates , 2017 .

[88]  Ling Fan,et al.  Potassium-Based Dual Ion Battery with Dual-Graphite Electrode. , 2017, Small.

[89]  J. Choi,et al.  Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries , 2017, Science.

[90]  Xiulei Ji,et al.  Anion Hosting Cathodes in Dual-Ion Batteries , 2017 .

[91]  Fan Zhang,et al.  A Dual‐Carbon Battery Based on Potassium‐Ion Electrolyte , 2017 .

[92]  Yiying Wu,et al.  Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. , 2017, Journal of the American Chemical Society.

[93]  K. Kang,et al.  Multi-electron redox phenazine for ready-to-charge organic batteries , 2017 .

[94]  Yutao Li,et al.  Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries , 2017, Advanced science.

[95]  Zhixiong Zhang,et al.  An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. , 2017, Chemical communications.

[96]  Yue-cheng Fang,et al.  Integrated Configuration Design for Ultrafast Rechargeable Dual‐Ion Battery , 2017 .

[97]  Bingan Lu,et al.  An Organic Cathode for Potassium Dual-Ion Full Battery , 2017 .

[98]  M. Yoshio,et al.  Hexafluorophosphate intercalation into graphite electrode from ethylene carbonate/ethylmethyl carbonate , 2017 .

[99]  Zi‐Feng Ma,et al.  Challenges of Spinel Li4Ti5O12 for Lithium‐Ion Battery Industrial Applications , 2017 .

[100]  M. Jaroniec,et al.  Na2Ti3O7@N‐Doped Carbon Hollow Spheres for Sodium‐Ion Batteries with Excellent Rate Performance , 2017, Advanced materials.

[101]  Jiangwei Wang,et al.  Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries , 2017 .

[102]  Martin Winter,et al.  Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density , 2017, Journal of Solid State Electrochemistry.

[103]  M. Kovalenko,et al.  Efficient Aluminum Chloride–Natural Graphite Battery , 2017 .

[104]  Fan Zhang,et al.  A Novel Potassium‐Ion‐Based Dual‐Ion Battery , 2017, Advanced materials.

[105]  Yongbing Tang,et al.  Bubble‐Sheet‐Like Interface Design with an Ultrastable Solid Electrolyte Layer for High‐Performance Dual‐Ion Batteries , 2017, Advanced materials.

[106]  S. Mahapatra,et al.  Aluminium-ion batteries: developments and challenges , 2017 .

[107]  K. Du,et al.  A facile approach to enhance high-cutoff voltage cycle stability of LiNi0.5Co0.2Mn0.3O2 cathode materials using lithium titanium oxide , 2017 .

[108]  Maohua Sheng,et al.  A Novel Tin‐Graphite Dual‐Ion Battery Based on Sodium‐Ion Electrolyte with High Energy Density , 2017 .

[109]  Jiali Liu,et al.  γ-butyrolactone and glutaronitrile as 5 V electrolyte additive and its electrochemical performance for LiNi0.5Mn1.5O4 , 2017 .

[110]  A. Eftekhari Lithium-Ion Batteries with High Rate Capabilities , 2017 .

[111]  G. Lu,et al.  Understanding Ultrafast Rechargeable Aluminum-Ion Battery from First-Principles , 2017 .

[112]  Feng Wu,et al.  Nature-Inspired Na2Ti3O7 Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[113]  J. Tübke,et al.  Anion intercalation into a graphite cathode from various sodium-based electrolyte mixtures for dual-ion battery applications , 2017 .

[114]  Jiangwen Liu,et al.  3,3'-(Ethylenedioxy)dipropiononitrile as an Electrolyte Additive for 4.5 V LiNi1/3Co1/3Mn1/3O2/Graphite Cells. , 2017, ACS applied materials & interfaces.

[115]  Yingjun Liu,et al.  A Defect‐Free Principle for Advanced Graphene Cathode of Aluminum‐Ion Battery , 2017, Advanced materials.

[116]  R. Solanki,et al.  High Performance Prussian Blue Cathode for Nonaqueous Ca-ion Intercalation Battery , 2017 .

[117]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[118]  S. Dai,et al.  Electrochemically Driven Transformation of Amorphous Carbons to Crystalline Graphite Nanoflakes: A Facile and Mild Graphitization Method. , 2017, Angewandte Chemie.

[119]  Hongyu Wang,et al.  Hexafluorophosphate anion intercalation into graphite electrode from methyl propionate , 2017 .

[120]  M. G. Park,et al.  Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives , 2017, Advanced materials.

[121]  Weishan Li,et al.  Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive , 2017 .

[122]  Shiguo Zhang,et al.  Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. , 2017, Chemical reviews.

[123]  J. Goodenough Changing Outlook for Rechargeable Batteries , 2017 .

[124]  Martin Winter,et al.  A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries , 2017 .

[125]  L. Mai,et al.  Energy storage through intercalation reactions: electrodes for rechargeable batteries , 2017 .

[126]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[127]  Bingan Lu,et al.  Graphene Nanoribbons on Highly Porous 3D Graphene for High‐Capacity and Ultrastable Al‐Ion Batteries , 2017, Advanced materials.

[128]  Joseph D. Smith,et al.  Techno-Economic Analysis of a Sustainable Coal, Wind, and Nuclear Hybrid Energy System , 2016 .

[129]  Fan Zhang,et al.  A Dual‐Ion Battery Constructed with Aluminum Foil Anode and Mesocarbon Microbead Cathode via an Alloying/Intercalation Process in an Ionic Liquid Electrolyte , 2016 .

[130]  S. Feng,et al.  (EMIm)+(PF6)− Ionic Liquid Unlocks Optimum Energy/Power Density for Architecture of Nanocarbon‐Based Dual‐Ion Battery , 2016 .

[131]  Y. Lei Functional Nanostructuring for Efficient Energy Conversion and Storage , 2016 .

[132]  Maohua Sheng,et al.  Carbon‐Coated Porous Aluminum Foil Anode for High‐Rate, Long‐Term Cycling Stability, and High Energy Density Dual‐Ion Batteries , 2016, Advanced materials.

[133]  L. Gu,et al.  Metal–organic frameworks as selectivity regulators for hydrogenation reactions , 2016, Nature.

[134]  J. Hassoun,et al.  Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes , 2016 .

[135]  T. Ishihara,et al.  Fast Diffusivity of PF6 - Anions in Graphitic Carbon for a Dual-Carbon Rechargeable Battery with Superior Rate Property , 2016 .

[136]  M. Winter,et al.  New insights into the uptake/release of FTFSI− anions into graphite by means of in situ powder X-ray diffraction , 2016 .

[137]  Jun Chen,et al.  Oxocarbon Salts for Fast Rechargeable Batteries. , 2016, Angewandte Chemie.

[138]  Yu‐Guo Guo,et al.  Investigation into the Surface Chemistry of Li4Ti5O12 Nanoparticles for Lithium Ion Batteries. , 2016, ACS applied materials & interfaces.

[139]  Zelang Jian,et al.  A Hydrocarbon Cathode for Dual-Ion Batteries , 2016 .

[140]  P. Poizot,et al.  A dual–ion battery using diamino–rubicene as anion–inserting positive electrode material , 2016 .

[141]  N. Hampp,et al.  In-Situ Raman Study of the Intercalation of Bis(trifluoromethylsulfonyl)imid Ions into Graphite inside a Dual-Ion Cell , 2016 .

[142]  Xueliang Sun,et al.  Sodium‐Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective , 2016, Advanced materials.

[143]  Wenhua Zuo,et al.  Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries , 2016 .

[144]  J. Dahn,et al.  Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives , 2016 .

[145]  H. Dai,et al.  3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminum‐Ion Battery , 2016, Advanced materials.

[146]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[147]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.

[148]  S. Jiao,et al.  A Novel Aluminum‐Ion Battery: Al/AlCl3‐[EMIm]Cl/Ni3S2@Graphene , 2016 .

[149]  G. Cao,et al.  A promising cathode for Li-ion batteries: Li 3 V 2 (PO 4 ) 3 , 2016 .

[150]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[151]  Yuki Yamada,et al.  Superconcentrated electrolytes for a high-voltage lithium-ion battery , 2016, Nature Communications.

[152]  Fan Zhang,et al.  A Novel Aluminum–Graphite Dual‐Ion Battery , 2016 .

[153]  Yong Xu,et al.  Hydrogenation Driven Conductive Na2Ti3O7 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries. , 2016, Nano letters.

[154]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[155]  G. Cao,et al.  Understanding electrochemical potentials of cathode materials in rechargeable batteries , 2016 .

[156]  Tierui Zhang,et al.  Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production , 2016 .

[157]  H. Fan,et al.  Recent Advances in Improving the Stability of Perovskite Solar Cells , 2016 .

[158]  M. R. Palacín,et al.  Towards a calcium-based rechargeable battery. , 2016, Nature materials.

[159]  H. Hahn,et al.  The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes. , 2016, Physical chemistry chemical physics : PCCP.

[160]  A. Rao,et al.  Defect-engineered graphene for bulk supercapacitors with high energy and power densities , 2016, 1601.05173.

[161]  Hongyu Wang,et al.  Hexafluorophosphate anion intercalation into graphite electrode from sulfolane/ethylmethyl carbonate solutions , 2016 .

[162]  A. Walsh,et al.  What Is Moving in Hybrid Halide Perovskite Solar Cells? , 2016, Accounts of chemical research.

[163]  T. Ishihara,et al.  Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte , 2016 .

[164]  Jens K Nørskov,et al.  Materials for solar fuels and chemicals. , 2016, Nature materials.

[165]  Feng Wu,et al.  A Safe Electrolyte with Counterbalance between the Ionic Liquid and Tris(ethylene glycol)dimethyl ether for High Performance Lithium-Sulfur Batteries , 2015 .

[166]  Guozhong Cao,et al.  ZnO cathode buffer layers for inverted polymer solar cells , 2015 .

[167]  Yuki Yamada,et al.  Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes , 2015 .

[168]  Leigang Xue,et al.  Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries , 2015 .

[169]  J. Long,et al.  A Dual-Ion Battery Cathode via Oxidative Insertion of Anions in a Metal-Organic Framework. , 2015, Journal of the American Chemical Society.

[170]  M. Winter,et al.  Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. , 2015, Chemical communications.

[171]  Monte L. Helm,et al.  Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds , 2015, Scientific Reports.

[172]  J. Tübke,et al.  Anion intercalation into graphite from a sodium-containing electrolyte , 2015 .

[173]  Li Zhang,et al.  Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells , 2015 .

[174]  Wan-Jin Lee,et al.  Hierarchically mesoporous flower-like cobalt oxide/carbon nanofiber composites with shell–core structure as anodes for lithium ion batteries , 2015 .

[175]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[176]  Pu Chen,et al.  Corrosion chemistry and protection of zinc & zinc alloys by polymer-containing materials for potential use in rechargeable aqueous batteries , 2015 .

[177]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[178]  J. Read In-Situ Studies on the Electrochemical Intercalation of Hexafluorophosphate Anion in Graphite with Selective Cointercalation of Solvent , 2015 .

[179]  R. Narayanan,et al.  Modulation of the Electrostatic and Quantum Capacitances of Few Layered Graphenes through Plasma Processing. , 2015, Nano letters.

[180]  M. Biener,et al.  Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. , 2015, ACS nano.

[181]  Kyung Min Jeong,et al.  Effects of Capacity Ratios between Anode and Cathode on Electrochemical Properties for Lithium Polymer Batteries , 2015 .

[182]  Ahmad Azmin Mohamad,et al.  Advances of aqueous rechargeable lithium-ion battery: A review , 2015 .

[183]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[184]  Jeyraj Selvaraj,et al.  Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation , 2015 .

[185]  Ming Cheng,et al.  The state of the art of wind energy conversion systems and technologies: A review , 2014 .

[186]  El Madjid Berkouk,et al.  A stand-alone wind power supply with a Li-ion battery energy storage system , 2014 .

[187]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[188]  D. Mitlin,et al.  Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li , 2014 .

[189]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[190]  M. Winter,et al.  Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte , 2014 .

[191]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[192]  M. Winter,et al.  In situ X-ray Diffraction Studies of Cation and Anion Inter­calation into Graphitic Carbons for Electrochemical Energy Storage Applications , 2014 .

[193]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[194]  Soojin Park,et al.  A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance , 2014 .

[195]  Joonwon Lim,et al.  Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. , 2014, Chemical communications.

[196]  M. Winter,et al.  Dual-Ion Cells based on the Electrochemical Intercalation of Asymmetric Fluorosulfonyl-(trifluoromethanesulfonyl) imide Anions into Graphite , 2014 .

[197]  I. Snook,et al.  Anion secondary batteries utilizing a reversible BF4 insertion/extraction two-dimensional Si material , 2014 .

[198]  K. Müllen,et al.  Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. , 2014, Journal of the American Chemical Society.

[199]  Arumugam Manthiram,et al.  A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries , 2014 .

[200]  M. Winter,et al.  Study of the Electrochemical Behavior of Dual-Graphite Cells Using Ionic Liquid-Based Electrolytes , 2014 .

[201]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[202]  Kang Xu,et al.  Dual-graphite chemistry enabled by a high voltage electrolyte , 2014 .

[203]  J. Tarascon,et al.  Rationalization of Intercalation Potential and Redox Mechanism for A2Ti3O7 (A = Li, Na) , 2013 .

[204]  Zhong Lin Wang,et al.  Theoretical study of contact-mode triboelectric nanogenerators as an effective power source , 2013 .

[205]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[206]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[207]  K. Amine,et al.  Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple , 2013 .

[208]  Mikael Höök,et al.  Lithium availability and future production outlooks , 2013 .

[209]  Jiwen Feng,et al.  A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode , 2013, Scientific Reports.

[210]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[211]  Zhen Zhou,et al.  Recent progress in high-voltage lithium ion batteries , 2013 .

[212]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[213]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[214]  M. Yoshio,et al.  Development of a novel and safer energy storage system using a graphite cathode and Nb2O5 anode , 2013 .

[215]  Qi Guo,et al.  Fabrication of porous Sn–C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries , 2013 .

[216]  Zhongfan Liu,et al.  The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet , 2013, Scientific Reports.

[217]  Jung-Hyun Kim,et al.  Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries , 2013 .

[218]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[219]  Haoshen Zhou,et al.  The pursuit of rechargeable solid-state Li–air batteries , 2013 .

[220]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[221]  L. Wirtz,et al.  Manifestation of Charged and Strained Graphene Layers in the Raman Response of Graphite Intercalation Compounds , 2013, ACS nano.

[222]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[223]  Kazuaki Matsumoto,et al.  Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte , 2013 .

[224]  Meiten Koh,et al.  Fluorinated electrolytes for 5 V lithium-ion battery chemistry , 2013 .

[225]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[226]  Jun Chen,et al.  LiNi(0.5)Mn(1.5)O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. , 2013, Nano letters.

[227]  O. Borodin,et al.  Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes , 2013 .

[228]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[229]  Tingfeng Yi,et al.  Increased cycling stability of Li4Ti5O12-coated LiMn1.5Ni0.5O4 as cathode material for lithium-ion batteries , 2013 .

[230]  M. Winter,et al.  Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells , 2013 .

[231]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[232]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[233]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[234]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[235]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[236]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[237]  Jyh‐Chiang Jiang,et al.  Theoretical study of the reductive decomposition of ethylene sulfite: a film-forming electrolyte additive in lithium ion batteries. , 2012, The journal of physical chemistry. A.

[238]  Yair Ein-Eli,et al.  Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium‐Ion Batteries , 2012 .

[239]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[240]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[241]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[242]  Martin Winter,et al.  Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes , 2012 .

[243]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[244]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[245]  Philippe Poggi,et al.  Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry , 2012 .

[246]  X. Lou,et al.  Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. , 2012, Nanoscale.

[247]  N. Hu,et al.  Effect of defects on fracture strength of graphene sheets , 2012 .

[248]  Martin Winter,et al.  Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries , 2012 .

[249]  Martin Winter,et al.  Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells , 2012 .

[250]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[251]  Xiqian Yu,et al.  Alumina‐Coated Patterned Amorphous Silicon as the Anode for a Lithium‐Ion Battery with High Coulombic Efficiency , 2011, Advanced materials.

[252]  Diego Lisbona,et al.  A review of hazards associated with primary lithium and lithium-ion batteries , 2011 .

[253]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[254]  S. Dai,et al.  Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. , 2011, The journal of physical chemistry. B.

[255]  T. Ishihara,et al.  Constructing a novel and safer energy storing system using a graphite cathode and a MoO 3 anode , 2011 .

[256]  R. Dominko,et al.  Lithium bis(fluorosulfonyl)imidePYR 14TFSI ionic liquid electrolyte compatible with graphite , 2011 .

[257]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[258]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[259]  S. Seki,et al.  Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. , 2011, Journal of the American Chemical Society.

[260]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[261]  John B. Goodenough,et al.  Challenges for rechargeable batteries , 2011 .

[262]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Polydopamine‐Treated Polyethylene Separators for High‐Power Li‐Ion Batteries , 2011, Advanced materials.

[263]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[264]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[265]  A. Bhowmick,et al.  A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites , 2011 .

[266]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[267]  Kang Xu,et al.  Electrolyte Additive in Support of 5 V Li Ion Chemistry , 2011 .

[268]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[269]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[270]  Anthony F. Hollenkamp,et al.  The electrochemistry of lithium in ionic liquid/organic diluent mixtures , 2010 .

[271]  Alessandra Bonanni,et al.  Graphene for electrochemical sensing and biosensing , 2010 .

[272]  Tingfeng Yi,et al.  Recent development and application of Li4Ti5O12 as anode material of lithium ion battery , 2010 .

[273]  M. Lerner,et al.  The first graphite intercalation compounds containing tris(pentafluoroethyl)trifluorophosphate , 2010 .

[274]  B. Lucht,et al.  Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries , 2010 .

[275]  W. Shyy,et al.  Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance , 2010 .

[276]  P. Novák,et al.  In situ X-ray diffraction study of different graphites in a propylene carbonate based electrolyte at very positive potentials , 2010 .

[277]  Masatoshi Nagahama,et al.  High Voltage Performances of Li2NiPO4F Cathode with Dinitrile-Based Electrolytes , 2010 .

[278]  L. Wen,et al.  Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries , 2010 .

[279]  C. N. Lau,et al.  Graphene: Materially Better Carbon , 2010 .

[280]  Anton Van der Ven,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[281]  M. Yoshio,et al.  Suppression of PF6- intercalation into graphite by small amounts of ethylene carbonate in activated carbon/graphite capacitors. , 2010, Chemical communications.

[282]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[283]  Andrzej Lewandowski,et al.  Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies , 2009 .

[284]  T. Sutto,et al.  X-ray diffraction studies of electrochemical graphite intercalation compounds of ionic liquids , 2009 .

[285]  P. Novák,et al.  The influence of electrolyte and graphite type on the PF 6 - intercalation behaviour at high potentials , 2009 .

[286]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[287]  Nam-Soon Choi,et al.  Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids , 2009 .

[288]  Stefano Passerini,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes , 2009 .

[289]  Yanbao Fu,et al.  Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries , 2009 .

[290]  T. Nakajima,et al.  Electrochemical Behavior of Nonflammable Organo-Fluorine Compounds for Lithium Ion Batteries , 2009 .

[291]  K. Amine,et al.  Sulfone-based electrolytes for high-voltage Li-ion batteries ☆ , 2009 .

[292]  Jun Chen,et al.  Combination of lightweight elements and nanostructured materials for batteries. , 2009, Accounts of Chemical Research.

[293]  S. Pisana,et al.  Phonon renormalization in doped bilayer graphene , 2008, 0807.1631.

[294]  A. Sakhaee-Pour,et al.  Elastic properties of single-layered graphene sheet , 2009 .

[295]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[296]  M. Armand,et al.  Building better batteries , 2008, Nature.

[297]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[298]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[299]  B. Schmitt,et al.  In situ X-ray diffraction of the intercalation of (C2H5)4N+ and BF4- into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes , 2007 .

[300]  Jiayan Luo,et al.  Aqueous Lithium-ion Battery LiTi2(PO4)3/LiMn2O4 with High Power and Energy Densities as well as Superior Cycling Stability , 2007 .

[301]  M. Ue,et al.  Polar Effect of Successive Fluorination of Dimethyl Carbonate on Physical Properties , 2007 .

[302]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[303]  H. Matsumoto,et al.  Electrochemical Intercalation of Hexafluorophosphate Anion into Various Carbons for Cathode of Dual-Carbon Rechargeable Battery , 2007 .

[304]  I. Uchida,et al.  Structure and electron density analysis of electrochemically and chemically delithiated LiCoO2 single crystals , 2007 .

[305]  T. Abe,et al.  Compatibility of quaternary ammonium-based ionic liquid electrolytes with electrodes in lithium ion batteries , 2006 .

[306]  Shengbo Zhang The effect of the charging protocol on the cycle life of a Li-ion battery , 2006 .

[307]  Takao Inoue,et al.  Effect of Electrode Parameters on LiFePO4 Cathodes , 2006 .

[308]  Martin Winter,et al.  Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes , 2006 .

[309]  K. Poeppelmeier,et al.  Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties , 2006 .

[310]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[311]  R. Compton,et al.  Nanotrench arrays reveal insight into graphite electrochemistry. , 2005, Angewandte Chemie.

[312]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[313]  S. Reich,et al.  Raman spectroscopy of graphite , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[314]  J. Dahn,et al.  Effects of solvents and salts on the thermal stability of LiC6 , 2004 .

[315]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[316]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[317]  M. Wagner,et al.  Electrolyte Decomposition Reactions on Tin- and Graphite-Based Anodes are Different , 2004 .

[318]  W. Henderson,et al.  Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials , 2004 .

[319]  Pankaj Arora,et al.  Battery separators. , 2004, Chemical reviews.

[320]  H. Ota,et al.  XAFS and TOF-SIMS analysis of SEI layers on electrodes , 2003 .

[321]  Joongpyo Shim,et al.  Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4 , 2003 .

[322]  Eric Forssberg,et al.  Mechanical recycling of waste electric and electronic equipment: a review. , 2003, Journal of hazardous materials.

[323]  C. P. Vicente,et al.  Improvement of the Electrochemical Performance of LiCoPO4 5 V Material Using a Novel Synthesis Procedure , 2002 .

[324]  Niels J. Bjerrum,et al.  Aluminum as anode for energy storage and conversion: a review , 2002 .

[325]  Pier Paolo Prosini,et al.  Determination of the chemical diffusion coefficient of lithium in LiFePO4 , 2002 .

[326]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[327]  Martin Winter,et al.  Tin and tin-based intermetallics as new anode materials for lithium-ion cells , 2001 .

[328]  Geun-Chang Chung,et al.  Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation , 2000 .

[329]  Bruno Scrosati,et al.  Recent advances in lithium ion battery materials , 2000 .

[330]  F. Beck,et al.  Rechargeable batteries with aqueous electrolytes , 2000 .

[331]  J. Dahn,et al.  Energy and Capacity Projections for Practical Dual‐Graphite Cells , 2000 .

[332]  J. Dahn,et al.  Electrochemical Intercalation of PF 6 into Graphite , 2000 .

[333]  M. Lerner,et al.  Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents , 1999 .

[334]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[335]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[336]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[337]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[338]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[339]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[340]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[341]  K. Brandt,et al.  Historical development of secondary lithium batteries , 1994 .

[342]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[343]  P. Trulove,et al.  Dual Intercalating Molten Electrolyte Batteries , 1994 .

[344]  K. Wippermann,et al.  The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives , 1991 .

[345]  H. Zabel,et al.  Graphite Intercalation Compounds I , 1990 .

[346]  J. Brédas,et al.  Polarons, bipolarons, and solitons in conducting polymers , 1985 .

[347]  DiVincenzo Dp,et al.  Cohesion and structure in stage-1 graphite intercalation compounds. , 1985 .

[348]  A. Magerl,et al.  Phonons in LiC6 , 1983 .

[349]  P. Kashkarov,et al.  LUMINESCENCE OFTHE ORGANIC-MOLECULES ADSORBED ON THE SURFACES OF GERMANIUM AND SILICON , 1983 .

[350]  K. Deuchert,et al.  Multistage Organic Redox Systems—A General Structural Principle , 1978 .

[351]  M. Armand,et al.  Graphite intercalation compounds as cathode materials , 1977 .

[352]  Jeff Perkins,et al.  Materials and mechanisms determining the performance of lead-acid storage batteries an invited review , 1977 .

[353]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[354]  G. Mamantov,et al.  Acid-base properties of the systems aluminum chloride-metal chloride (metal = lithium, sodium, potassium, cesium) , 1972 .

[355]  W. Tiedemann,et al.  A Secondary, Nonaqueous Solvent Battery , 1971 .

[356]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[357]  W. Rüdorff Kristallstruktur der Säureverbindungen des Graphits , 1940 .