Similar integration but different stability of Alus and LINEs in the human genome.

[1]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[2]  T. Darden,et al.  Biased distribution of inverted and direct Alus in the human genome: implications for insertion, exclusion, and genome stability. , 2001, Genome research.

[3]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[4]  J. Jurka,et al.  Inverted Alu repeats unstable in yeast are excluded from the human genome , 2000, The EMBO journal.

[5]  M. Hattori,et al.  The DNA sequence of human chromosome 21 , 2000, Nature.

[6]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[7]  G Bernardi,et al.  Isochores and the evolutionary genomics of vertebrates. , 2000, Gene.

[8]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[9]  Melanie E. Goward,et al.  The DNA sequence of human chromosome 22 , 1999, Nature.

[10]  G. Schuler,et al.  Making effective use of human genomic sequence data. , 1999, Trends in genetics : TIG.

[11]  J. Boeke,et al.  Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. , 1998, Biochemistry.

[12]  G Bernardi,et al.  CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. , 1998, Gene.

[13]  G. Bernardi,et al.  Distribution of the mammalian‐wide interspersed repeats (MIRs) in the isochores of the human genome , 1998, FEBS letters.

[14]  G. Bernardi,et al.  The regional integration of retroviral sequences into the mosaic genomes of mammals. , 1998, Gene.

[15]  C. Schmid,et al.  Does SINE evolution preclude Alu function? , 1998, Nucleic acids research.

[16]  A V Carrano,et al.  High-resolution cartography of recently integrated human chromosome 19-specific Alu fossils. , 1998, Journal of molecular biology.

[17]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. Morton,et al.  A metric map of humans: 23,500 loci in 850 bands. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[20]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[21]  G Bernardi,et al.  The gene distribution of the human genome. , 1996, Gene.

[22]  S. Martin,et al.  Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition , 1994, Molecular and cellular biology.

[23]  C. Schmid,et al.  Developmental differences in methylation of human Alu repeats , 1993, Molecular and cellular biology.

[24]  R. Gibbs,et al.  A human dimorphism resulting from loss of an Alu. , 1992, Genomics.

[25]  G. Bernardi,et al.  The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Deininger,et al.  Recently amplified Alu family members share a common parental Alu sequence , 1988, Molecular and cellular biology.

[27]  G. Bernardi,et al.  Gene distribution and nucleotide sequence organization in the mouse genome. , 1986, European journal of biochemistry.

[28]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[29]  E. Vanin,et al.  Processed pseudogenes: characteristics and evolution. , 1984, Annual review of genetics.

[30]  C. Hutchison,et al.  The L1Md long interspersed repeat family in the mouse: almost all examples are truncated at one end. , 1983, Nucleic acids research.

[31]  G Bernardi,et al.  The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Bernardi,et al.  Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Bernardi,et al.  The major components of the mouse and human genomes. 2. Reassociation kinetics. , 1981, European journal of biochemistry.

[34]  G Bernardi,et al.  An approach to the organization of eukaryotic genomes at a macromolecular level. , 1976, Journal of molecular biology.

[35]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[36]  H. Munro,et al.  Mammalian protein metabolism , 1964 .