Orthonormal bases in the orbit of square-integrable representations of nilpotent Lie groups

[1]  G. Folland Meta-Heisenberg Groups , 2020, Fourier analysis.

[2]  José Luis Romero,et al.  Density of sampling and interpolation in reproducing kernel Hilbert spaces , 2016, J. Lond. Math. Soc..

[3]  Michael Ruzhansky,et al.  Quantization on Nilpotent Lie Groups , 2016 .

[4]  Michael Ruzhansky,et al.  Pseudo-differential operators on the Heisenberg group , 2016 .

[5]  K. Grōchenig,et al.  Deformation of Gabor systems , 2013, 1311.3861.

[6]  D. Arnal,et al.  Canonical coordinates for a class of solvable groups , 2012 .

[7]  D. Arnal,et al.  Construction of canonical coordinates for exponential Lie groups , 2009 .

[8]  T. Strohmer,et al.  Pseudodifferential operators on locally compact abelian groups and Sjöstrand's symbol class , 2006, math/0604294.

[9]  R. Balan,et al.  Density, Overcompleteness, and Localization of Frames. I. Theory , 2005 .

[10]  K. Gröchenig,et al.  Sampling theorems on locally compact groups from oscillation estimates , 2005, math/0509178.

[11]  Wang-Q Lim,et al.  Wavelets with composite dilations , 2004 .

[12]  Bachir Bekka Square Integrable Representations, von Neumann Algebras and An Application to Gabor Analysis , 2004 .

[13]  John J. Benedetto,et al.  The Balian-Low theorem and regularity of Gabor systems , 2003 .

[14]  P. Aniello,et al.  On discrete frames associated with semidirect products , 2001 .

[15]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[16]  H. Feichtinger,et al.  Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .

[17]  D. Walnut,et al.  Differentiation and the Balian-Low Theorem , 1994 .

[18]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[19]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[20]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[21]  Joseph A. Wolf,et al.  SQUARE INTEGRABLE REPRESENTATIONS OF NILPOTENT GROUPS , 1973 .

[22]  Angelika Höfler,et al.  Necessary density conditions for frames on homogeneous groups , 2014 .

[23]  C. Heil A basis theory primer , 2011 .

[24]  John J. Benedetto,et al.  Applied and numerical harmonic analysis , 1997 .

[25]  F. Greenleaf,et al.  Representations of nilpotent Lie groups and their applications , 1989 .

[26]  G. Folland Harmonic analysis in phase space , 1989 .

[27]  Ole A. Nielsen Unitary representations and coadjoint orbits of low-dimensional nilpotent Lie groups , 1983 .