On a new generalization of coherent rings
暂无分享,去创建一个
[1] Overtoun M. G. Jenda,et al. THE EXISTENCE OF GORENSTEIN FLAT COVERS , 2004 .
[2] Sang Bum Lee. n-Coherent Rings , 2002 .
[3] C. Weibel,et al. An Introduction to Homological Algebra: References , 1960 .
[4] S. Rim,et al. DIVISIBLE ENVELOPES OVER GORENSTEIN RINGS OF KRULL DIMENSION AT MOST ONE , 2001 .
[5] P. Eklof,et al. How To Make Ext Vanish , 2001 .
[6] Jianlong Chen,et al. A note on existence of envelopes and covers , 1996, Bulletin of the Australian Mathematical Society.
[7] Jinzhong Xu. Flat covers of modules , 1996 .
[8] D. Costa. Parameterizing families of non-noetherian rings , 1994 .
[9] B. Torrecillas,et al. Relative injective covers , 1994 .
[10] Robert Wisbauer,et al. Foundations of module and ring theory , 1991 .
[11] Sarah Glaz,et al. Commutative Coherent Rings , 1989 .
[12] Marsha Finkel Jones. Coherence relative to an hereditary torsion theory , 1982 .
[13] E. Enochs. Injective and flat covers, envelopes and resolvents , 1981 .
[14] T. Cheatham,et al. Flat and projective character modules , 1981 .
[15] E. Enochs. A Note on Absolutely Pure Modules , 1976, Canadian Mathematical Bulletin.
[16] R. Colby. Rings which have flat injective modules , 1975 .
[17] Frank W. Anderson,et al. Rings and Categories of Modules , 1974 .
[18] B. Stenström. Coherent Rings and Fp-Injective Modules , 1970 .