Globally Guided Progressive Fusion Network for 3D Pancreas Segmentation

Recently 3D volumetric organ segmentation attracts much research interest in medical image analysis due to its significance in computer aided diagnosis. This paper aims to address the pancreas segmentation task in 3D computed tomography volumes. We propose a novel end-to-end network, Globally Guided Progressive Fusion Network, as an effective and efficient solution to volumetric segmentation, which involves both global features and complicated 3D geometric information. A progressive fusion network is devised to extract 3D information from a moderate number of neighboring slices and predict a probability map for the segmentation of each slice. An independent branch for excavating global features from downsampled slices is further integrated into the network. Extensive experimental results demonstrate that our method achieves state-of-the-art performance on two pancreas datasets.

[1]  Christian Ledig,et al.  Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[3]  Alan L. Yuille,et al.  Bridging the Gap Between 2D and 3D Organ Segmentation , 2018, MICCAI.

[4]  Ronald M. Summers,et al.  DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation , 2015, MICCAI.

[5]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[6]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[7]  Alan L. Yuille,et al.  Recurrent Saliency Transformation Network: Incorporating Multi-stage Visual Cues for Small Organ Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Song Wang,et al.  Three-Dimensional CT Image Segmentation by Combining 2D Fully Convolutional Network with 3D Majority Voting , 2016, LABELS/DLMIA@MICCAI.

[10]  Yan Wang,et al.  A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans , 2016, MICCAI.

[11]  Yuichiro Hayashi,et al.  An application of cascaded 3D fully convolutional networks for medical image segmentation , 2018, Comput. Medical Imaging Graph..

[12]  Yuichiro Hayashi,et al.  Deep learning and its application to medical image segmentation , 2018, ArXiv.