Lattice normal modes and electronic properties of the correlated metal LaNiO$_3$

We use density functional theory (DFT) calculations to study the lattice vibrations and electronic properties of the correlated metal LaNiO$_3$. To characterize the rhombohedral to cubic structural phase transition of perovskite LaNiO$_3$, we examine the evolution of the Raman-active phonon modes with temperature. We find that the $A_{1g}$ Raman mode, whose frequency is sensitive to the electronic band structure, is a useful signature to characterize the octahedral rotations in rhombohedral LaNiO$_3$. We also study the importance of electron--electron correlation effects on the atomic structure with two approaches which go beyond the conventional band theory (local spin density approximation): the local spin density+Hubbard $U$ method (LSDA$+U$) and hybrid exchange-correlation density functionals which include portions of exact Fock-exchange. We find the conventional LSDA accurately reproduces the delocalized nature of the valence states in LaNiO$_3$ and gives the best structural and vibrational agreement to the available experimental data. Based on our calculations, we show that the electronic screening effect from the delocalized Ni 3$d$ and O-2$p$ states mitigate the electronic correlations of the $d^7$ Ni cations, making LaNiO$_3$ a weakly correlated metal.

[1]  Takeo Fujiwara,et al.  Electronic structure of perovskite-type transition metal oxides La M O 3 ( M = Ti ∼ Cu ) by U + GW approximation , 2009 .

[2]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[3]  J. Goodenough,et al.  Valence states and magnetic properties of LaNi1-xMnxO3 (for 0⩽x⩽0.2 and x=0.5) , 1984 .

[4]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[5]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[6]  P. M. Raccah,et al.  Complex vs Band Formation in Perovskite Oxides , 1965 .

[7]  M. Medarde,et al.  Structural, magnetic and electronic properties of perovskites (R = rare earth) , 1997 .

[8]  Steven G. Louie,et al.  Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .

[9]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[10]  Designed nonlocal pseudopotentials for enhanced transferability , 1997, cond-mat/9711163.

[11]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[12]  H. Ohashi,et al.  Fermi surfaces, electron-hole asymmetry, and correlation kink in a three-dimensional Fermi liquid LaNiO 3 , 2009, 0903.1487.

[13]  V. G. Ivanov,et al.  Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO 3 and LaMnO 3 , 1999 .

[14]  T. Saha‐Dasgupta,et al.  Density functional study of the insulating ground states in CaFe O 3 and La 1/3 Sr 2/3 Fe O 3 compounds , 2005 .

[15]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of RNiO3 (R=La,Pr,Nd,Sm): Electronically induced structural changes across the metal-insulator transition. , 1992, Physical review. B, Condensed matter.

[16]  Shimpei Ono,et al.  Electric‐Field Control of the Metal‐Insulator Transition in Ultrathin NdNiO3 Films , 2010, Advanced materials.

[17]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[18]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[19]  J. Triscone,et al.  Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO3 , 2009 .

[20]  G. Shivashankar,et al.  Low-temperature electronic properties of a normal conducting perovskite oxide (LaNiO3) , 1991 .

[21]  W. E. Pickett,et al.  Reformulation of the LDA+U method for a local orbital basis , 1996 .

[22]  Jean-Claude Tolédano,et al.  The Landau theory of phase transitions : application to structural, incommensurate, magnetic, and liquid crystal systems , 1987 .

[23]  R. K. Smith,et al.  Optical study of strained ultrathin films of strongly correlated LaNiO 3 , 2011 .

[24]  V. Anisimov,et al.  Electronic structure of possible nickelate analogs to the cuprates , 1999 .

[25]  D. Sarma,et al.  Electronic structure and the metal-insulator transition in LnNiO3(Ln=La, Pr, Nd, Sm and Ho): bandstructure results , 1994 .

[26]  Rupp,et al.  Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds NdNiO3 and PrNiO3. , 1993, Physical review. B, Condensed matter.

[27]  Xu,et al.  Electronic properties of the metallic perovskite LaNiO3: Correlated behavior of 3d electrons. , 1992, Physical review. B, Condensed matter.

[28]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[29]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[30]  R. Car,et al.  Hybrid density functional calculations of the band gap of Ga x In 1-x N , 2009, 0907.2001.

[31]  Gwan-Ha Kim,et al.  Effect of LaNiO3 electrode on microstructural and ferroelectric properties of Bi3.25Eu0.75Ti3O12 thin films , 2007 .

[32]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[33]  Gustau Catalan,et al.  Progress in perovskite nickelate research , 2008 .

[34]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[35]  M. Vallet‐Regí,et al.  Electronic structure and metal-insulator transition in LaNiO 3-δ , 2002 .

[36]  M. Ernzerhof,et al.  Construction of the adiabatic connection , 1996 .

[37]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.

[38]  J. S. Rowlinson,et al.  PHASE TRANSITIONS , 2021, Topics in Statistical Mechanics.

[39]  Xu,et al.  Resisitivity, thermopower, and susceptibility of RNiO3 (R=La,Pr). , 1993, Physical review. B, Condensed matter.

[40]  R. Angel,et al.  General rules for predicting phase transitions in perovskites due to octahedral tilting. , 2005, Physical review letters.

[41]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[42]  Nazzal,et al.  Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. , 1992, Physical review. B, Condensed matter.

[43]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[44]  Nazzal,et al.  Pressure dependence of the metal-insulator transition in the charge-transfer oxides RNiO3 (R=Pr,Nd,Nd0.7La0.3). , 1993, Physical review. B, Condensed matter.

[45]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[46]  Hiromichi Ohashi,et al.  Electronic structure ofLaNiO3−x: Anin situsoft x-ray photoemission and absorption study , 2007 .

[47]  A. Stroppa,et al.  Hybrid functional study of proper and improper multiferroics. , 2009, Physical chemistry chemical physics : PCCP.

[48]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[49]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[50]  X. Gonze,et al.  Adiabatic density-functional perturbation theory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[51]  A. Rappe,et al.  Density functional study of PbTi03 nanocapacitors with Pt and Au electrodes , 2010 .

[52]  K. Held,et al.  Electronic structure of nickelates: From two-dimensional heterostructures to three-dimensional bulk materials , 2010, 1111.1111.

[53]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[54]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[55]  Leon Balents,et al.  Low-dimensional Mott material: transport in ultrathin epitaxial LaNiO3 films , 2010 .

[56]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[57]  C. Rao,et al.  A study of ferroelectric thin films deposited on a LaNiO3 barrier electrode by nebulized spray pyrolysis , 2000 .

[58]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[59]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[60]  Zhou,et al.  Enhanced susceptibility in LNiO3 perovskites ( L = La,Pr,Nd,Nd0.5Sm0. 5) , 2000, Physical review letters.

[61]  M. Varela,et al.  Weak localization effects in some metallic perovskites , 2004 .

[62]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. , 2002, Acta crystallographica. Section B, Structural science.

[63]  Sawatzky,et al.  Local-density functional and on-site correlations: The electronic structure of La2CuO4 and LaCuO3. , 1994, Physical review. B, Condensed matter.

[64]  A. Umantsev Landau Theory of Phase Transitions , 2012 .

[65]  P. J. Ryan,et al.  Quantifying octahedral rotations in strained perovskite oxide films , 2010, 1002.1317.

[66]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[67]  Annabella Selloni,et al.  Order-N implementation of exact exchange in extended insulating systems , 2008, 0812.1322.

[68]  V. Jonauskas,et al.  Electronic structure ofLaNiO3−xthin films studied by x-ray photoelectron spectroscopy and density functional theory , 2010 .

[69]  Alexie M. Kolpak,et al.  Ferroelectricity in ultrathin perovskite films , 2005 .

[70]  B. Kang,et al.  Effect of conductive LaNiO3 electrode on the structural and ferroelectric properties of Bi3.25La0.75Ti3O12 films , 2006 .

[71]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .