Rethinking Assumptions in Deep Anomaly Detection

Though anomaly detection (AD) can be viewed as a classification problem (nominal vs. anomalous) it is usually treated in an unsupervised manner since one typically does not have access to, or it is infeasible to utilize, a dataset that sufficiently characterizes what it means to be "anomalous." In this paper we present results demonstrating that this intuition surprisingly does not extend to deep AD on images. For a recent AD benchmark on ImageNet, classifiers trained to discern between normal samples and just a few (64) random natural images are able to outperform the current state of the art in deep AD. We find that this approach is also very effective at other common image AD benchmarks. Experimentally we discover that the multiscale structure of image data makes example anomalies exceptionally informative.

[1]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[2]  Nikos Komodakis,et al.  Unsupervised Representation Learning by Predicting Image Rotations , 2018, ICLR.

[3]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[4]  Takehisa Yairi,et al.  Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction , 2014, MLSDA'14.

[5]  Cewu Lu,et al.  Inverse-Transform AutoEncoder for Anomaly Detection , 2019, ArXiv.

[6]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[7]  Colin Raffel,et al.  Realistic Evaluation of Deep Semi-Supervised Learning Algorithms , 2018, NeurIPS.

[8]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[9]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[10]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[11]  Yongsub Lim,et al.  RaPP: Novelty Detection with Reconstruction along Projection Pathway , 2020, ICLR.

[12]  Hans-Peter Kriegel,et al.  Angle-based outlier detection in high-dimensional data , 2008, KDD.

[13]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[14]  Marius Kloft,et al.  Image Anomaly Detection with Generative Adversarial Networks , 2018, ECML/PKDD.

[15]  Ran El-Yaniv,et al.  Deep Anomaly Detection Using Geometric Transformations , 2018, NeurIPS.

[16]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[17]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[18]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[19]  Yu Cheng,et al.  Deep Structured Energy Based Models for Anomaly Detection , 2016, ICML.

[20]  David M. J. Tax,et al.  One-class classification , 2001 .

[21]  Yaoliang Yu,et al.  Multivariate Triangular Quantile Maps for Novelty Detection , 2019, NeurIPS.

[22]  Yedid Hoshen,et al.  Classification-Based Anomaly Detection for General Data , 2020, ICLR.

[23]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[24]  Christopher Leckie,et al.  R1SVM: A Randomised Nonlinear Approach to Large-Scale Anomaly Detection , 2015, AAAI.

[25]  Jean-Philippe Vert,et al.  Consistency and Convergence Rates of One-Class SVMs and Related Algorithms , 2006, J. Mach. Learn. Res..

[26]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[27]  W. Polonik Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .

[28]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[29]  Don R. Hush,et al.  A Classification Framework for Anomaly Detection , 2005, J. Mach. Learn. Res..

[30]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[31]  Dawn Song,et al.  Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty , 2019, NeurIPS.

[32]  Nikos Komodakis,et al.  Wide Residual Networks , 2016, BMVC.

[33]  Ramesh Nallapati,et al.  OCGAN: One-Class Novelty Detection Using GANs With Constrained Latent Representations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Augustus Odena,et al.  Semi-Supervised Learning with Generative Adversarial Networks , 2016, ArXiv.

[35]  Qiang Liu,et al.  SU-IDS: A Semi-supervised and Unsupervised Framework for Network Intrusion Detection , 2018, ICCCS.

[36]  Sungzoon Cho,et al.  Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .

[37]  Alexander Binder,et al.  Deep Semi-Supervised Anomaly Detection , 2019, ICLR.

[38]  Wojciech Samek,et al.  Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond , 2020, ArXiv.

[39]  Toby P. Breckon,et al.  GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training , 2018, ACCV.

[40]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[42]  Georg Langs,et al.  Identifying and Categorizing Anomalies in Retinal Imaging Data , 2016, ArXiv.

[43]  Charles Richter,et al.  Safe Visual Navigation via Deep Learning and Novelty Detection , 2017, Robotics: Science and Systems.

[44]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[45]  Mahmood Fathy,et al.  Adversarially Learned One-Class Classifier for Novelty Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[46]  Jianping Yin,et al.  Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network , 2019, NeurIPS.

[47]  Simone Calderara,et al.  Latent Space Autoregression for Novelty Detection , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Marius Kloft,et al.  Toward Supervised Anomaly Detection , 2014, J. Artif. Intell. Res..

[49]  Thomas G. Dietterich,et al.  Systematic construction of anomaly detection benchmarks from real data , 2013, ODD '13.

[50]  Anton van den Hengel,et al.  Deep Anomaly Detection with Deviation Networks , 2019, KDD.

[51]  Cewu Lu,et al.  Attribute Restoration Framework for Anomaly Detection , 2019, IEEE Transactions on Multimedia.

[52]  Hongxing He,et al.  Outlier Detection Using Replicator Neural Networks , 2002, DaWaK.

[53]  Klaus-Robert Müller,et al.  Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models , 2018, Pattern Recognit..

[54]  Christopher Leckie,et al.  High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning , 2016, Pattern Recognit..

[55]  Stanislav Pidhorskyi,et al.  Generative Probabilistic Novelty Detection with Adversarial Autoencoders , 2018, NeurIPS.

[56]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[57]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[58]  Chuan Sheng Foo,et al.  Efficient GAN-Based Anomaly Detection , 2018, ArXiv.

[59]  Yann LeCun,et al.  Large-scale Learning with SVM and Convolutional for Generic Object Categorization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[60]  Carsten Steger,et al.  MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Gregory Cohen,et al.  EMNIST: an extension of MNIST to handwritten letters , 2017, CVPR 2017.

[62]  Alexander Binder,et al.  Deep One-Class Classification , 2018, ICML.

[63]  Jürgen Schmidhuber,et al.  Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction , 2011, ICANN.

[64]  Leon N. Cooper,et al.  Pattern Classification via Single Spheres , 2005, Discovery Science.

[65]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[66]  A. Tsybakov On nonparametric estimation of density level sets , 1997 .

[67]  B. Ravi Kiran,et al.  An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos , 2018, J. Imaging.

[68]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[69]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[70]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[71]  W. R. Buckland,et al.  Outliers in Statistical Data , 1979 .

[72]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[73]  Charu C. Aggarwal,et al.  Outlier Detection with Autoencoder Ensembles , 2017, SDM.

[74]  Vishal M. Patel,et al.  Learning Deep Features for One-Class Classification , 2018, IEEE Transactions on Image Processing.

[75]  Masoom A. Haider,et al.  Prostate Cancer Detection using Deep Convolutional Neural Networks , 2019, Scientific Reports.

[76]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[77]  Yi Liu,et al.  Minimum Enclosing and Maximum Excluding Machine for Pattern Description and Discrimination , 2006, 18th International Conference on Pattern Recognition (ICPR'06).