Two-component Magnetic Field along the Line of Sight to the Perseus Molecular Cloud: Contribution of the Foreground Taurus Molecular Cloud
暂无分享,去创建一个
M. Tamura | C. Hull | D. Johnstone | P. Bastien | R. Plume | J. Kwon | T. Hasegawa | S. Inutsuka | D. Arzoumanian | M. Tahani | Y. Doi | M. Matsumura | S. Sadavoy | Y. Shimajiri | R. Furuya | S. Coud'e
[1] S. Bontemps,et al. Herschel Gould Belt Survey Observations of Dense Cores in the Cepheus Flare Clouds , 2020, The Astrophysical Journal.
[2] Astrophysics,et al. Physical properties of the ambient medium and of dense cores in the Perseus star-forming region derived from Herschel Gould Belt Survey observations , 2020, Astronomy & Astrophysics.
[3] Lei Zhu,et al. The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333 , 2020, The Astrophysical Journal.
[4] A. Dambis,et al. Distance scale for high-luminosity stars in OB associations and in field with Gaia DR2. Spurious systematic motions , 2020, Astrophysics and Space Science.
[5] T. Henning,et al. Star–Gas Surface Density Correlations in 12 Nearby Molecular Clouds. I. Data Collection and Star-sampled Analysis , 2020, The Astrophysical Journal.
[6] A. Sicilia-Aguilar,et al. A 3D view of the Taurus star-forming region by Gaia and Herschel , 2020, Astronomy & Astrophysics.
[7] T. Ensslin,et al. Resolving nearby dust clouds , 2020, 2004.06732.
[8] J. D. Soler,et al. Could bow-shaped magnetic morphologies surround filamentary molecular clouds? , 2019, Astronomy & Astrophysics.
[9] Yang Su,et al. Molecular Cloud Distances Based on the MWISP CO Survey and Gaia DR2 , 2019, The Astrophysical Journal.
[10] Juan D. Soler,et al. Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure (Corrigendum) , 2019, Astronomy & Astrophysics.
[11] Lei Zhu,et al. The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region , 2019, The Astrophysical Journal.
[12] Shu Wang,et al. The Optical to Mid-infrared Extinction Law Based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys , 2019, The Astrophysical Journal.
[13] D. Blinov,et al. Extreme starlight polarization in a region with highly polarized dust emission , 2019, Astronomy & Astrophysics.
[14] B. Valette,et al. Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc , 2019, Astronomy & Astrophysics.
[15] A. Goodman,et al. A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition , 2019, The Astrophysical Journal.
[16] Shu-ichiro Inutsuka,et al. The Role of Magnetic Field in Molecular Cloud Formation and Evolution , 2019, Front. Astron. Space Sci..
[17] Hua-b. Li,et al. A Comparison between Magnetic Field Directions Inferred from Planck and Starlight Polarimetry toward Gould Belt Clouds , 2019, The Astrophysical Journal.
[18] T. Ensslin,et al. Charting nearby dust clouds using Gaia data only (Corrigendum) , 2019, Astronomy & Astrophysics.
[19] P. Andre',et al. Probing accretion of ambient cloud material into the Taurus B211/B213 filament , 2018, Astronomy & Astrophysics.
[20] T. Henning,et al. Star-forming content of the giant molecular filaments in the Milky Way , 2018, Astronomy & Astrophysics.
[21] M. López-Corredoira,et al. Gaia-DR2 extended kinematical maps , 2018, Astronomy & Astrophysics.
[22] A. Lazarian,et al. Magnetic Properties of Dust Grains, Effect of Precession, and Radiative Torque Alignment , 2018, The Astrophysical Journal.
[23] S. Potter,et al. Demonstration of Magnetic Field Tomography with Starlight Polarization toward a Diffuse Sightline of the ISM , 2018, The Astrophysical Journal.
[24] N. Evans,et al. The Gould’s Belt Distances Survey (GOBELINS). V. Distances and Kinematics of the Perseus Molecular Cloud , 2018, The Astrophysical Journal.
[25] J. Rizzo,et al. ALMA imaging of the nascent planetary nebula IRAS 15103–5754 , 2018, Monthly Notices of the Royal Astronomical Society.
[26] P. Hennebelle,et al. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave , 2018 .
[27] C. Bailer-Jones,et al. Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.
[28] P. J. Richards,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[29] A. Goodman,et al. Mapping Distances across the Perseus Molecular Cloud Using CO Observations, Stellar Photometry, and Gaia DR2 Parallax Measurements , 2018, The Astrophysical Journal.
[30] M. Tahani,et al. Helical magnetic fields in molecular clouds? , 2018, Astronomy & Astrophysics.
[31] Gaia Collaboration,et al. The Gaia mission , 2016, 1609.04153.
[32] P. Hennebelle,et al. Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization , 2016, 1605.09371.
[33] N. Peretto,et al. A census of dense cores in the Taurus L1495 cloud from the Herschel Gould Belt Survey , 2016, 1602.03143.
[34] M. Lombardi,et al. Herschel-Planck dust optical depth and column density maps - II. Perseus , 2015, 1511.08503.
[35] John E. Vaillancourt,et al. Interstellar Dust Grain Alignment , 2015 .
[36] N. Peretto,et al. A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey , 2015, 1507.05926.
[37] C. Bailer-Jones,et al. Estimating Distances from Parallaxes , 2015, 1507.02105.
[38] G. W. Pratt,et al. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.
[39] N. Evans,et al. STAR FORMATION RELATIONS IN NEARBY MOLECULAR CLOUDS , 2014, 1401.3287.
[40] G. W. Pratt,et al. Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.
[41] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[42] K. Min,et al. FAR-ULTRAVIOLET OBSERVATIONS OF THE TAURUS–PERSEUS–AURIGA COMPLEX , 2013, 1301.5433.
[43] G. Farrar,et al. A NEW MODEL OF THE GALACTIC MAGNETIC FIELD , 2012, 1204.3662.
[44] M. Lombardi,et al. STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS , 2011, 1112.4466.
[45] J. Acosta-Pulido,et al. INFRARED AND OPTICAL POLARIMETRY AROUND THE LOW-MASS STAR-FORMING REGION NGC 1333 IRAS 4A , 2011, 1105.1300.
[46] M. Lombardi,et al. ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.
[47] N. Evans,et al. THE STAR FORMATION RATE AND GAS SURFACE DENSITY RELATION IN THE MILKY WAY: IMPLICATIONS FOR EXTRAGALACTIC STUDIES , 2010, 1009.1621.
[48] Brenda C. Matthews,et al. THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005 , 2009 .
[49] F. Özel,et al. The relation between optical extinction and hydrogen column density in the Galaxy , 2009 .
[50] A. Goodman,et al. The Perseus Cloud , 2008 .
[51] R. Crutcher. Magnetic fields in molecular clouds , 2007 .
[52] A. Lazarian,et al. Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.
[53] A. Lazarian,et al. Radiative torque alignment: essential physical processes , 2007, 0707.3645.
[54] F. Bensch,et al. A KOSMA 7 deg$\mathsf{^{2}}$ $\mathsf{^{13}}$CO 2–1 and $\mathsf{^{12}}$CO 3–2 survey of the Perseus cloud - I. Structure analysis , 2006 .
[55] M. Lombardi,et al. The COMPLETE Survey of Star-Forming Regions: Phase I Data , 2006, astro-ph/0602542.
[56] D. Johnstone,et al. The Large- and Small-Scale Structures of Dust in the Star-forming Perseus Molecular Cloud , 2006, astro-ph/0602089.
[57] J. Foster,et al. The COMPLETE Nature of the Warm Dust Shell in Perseus , 2006, astro-ph/0601692.
[58] D. Johnstone,et al. An Extinction Threshold for Protostellar Cores in Ophiuchus , 2004, astro-ph/0406640.
[59] Kurt Hornik,et al. Testing and dating of structural changes in practice , 2003, Comput. Stat. Data Anal..
[60] B. Matthews,et al. Magnetic Fields in Star-forming Molecular Clouds. V. Submillimeter Polarization of the Barnard 1 Dark Cloud , 2002, astro-ph/0205328.
[61] Achim Zeileis,et al. Strucchange: An R package for testing for structural change in linear regression models , 2002 .
[62] F. Bonnarel,et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.
[63] A. Kawamura,et al. A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .
[64] C. Heiles. A Holistic View of the Magnetic Field in the Eridanus/Orion Region , 1997 .
[65] S. Miyama,et al. A Production Mechanism for Clusters of Dense Cores , 1997 .
[66] J. Weingartner,et al. Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.
[67] J. Weingartner,et al. Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996, astro-ph/9605046.
[68] Alyssa A. Goodman,et al. Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus , 1990 .
[69] K. Černis. Interstellar extinction in the vicinity of the reflection nebula NGC 1333 in Perseus , 1990 .
[70] M. Tamura,et al. Infrared polarimetry of dark clouds. III: The relationship between the magnetic field and star formation in the NGC 1333 region , 1988 .
[71] P. Thaddeus,et al. A CO survey of the dark nebulae in Perseus, Taurus, and Auriga , 1987 .
[72] W. Stein. Infrared radiation from interstellar grains. , 1966 .
[73] J. Ostriker. The Equilibrium of Polytropic and Isothermal Cylinders. , 1964 .
[74] Enrico Fermi,et al. Magnetic fields in spiral arms , 1953 .
[75] L. Davis,et al. The Strength of Interstellar Magnetic Fields , 1951 .