Two-component Magnetic Field along the Line of Sight to the Perseus Molecular Cloud: Contribution of the Foreground Taurus Molecular Cloud

Optical stellar polarimetry in the Perseus molecular cloud direction is known to show a fully mixed bimodal distribution of position angles across the cloud. We study the Gaia trigonometric distances to each of these stars and reveal that the two components in position angles trace two different dust clouds along the line of sight. One component, which shows a polarization angle of −37.°6 ± 35.°2 and a higher polarization fraction of 2.0 ± 1.7 %, primarily traces the Perseus molecular cloud at a distance of 300 pc. The other component, which shows a polarization angle of +66.°8 ± 19.°1 and a lower polarization fraction of 0.8 ± 0.6 %, traces a foreground cloud at a distance of 150 pc. The foreground cloud is faint, with a maximum visual extinction of ≤1 mag. We identify that foreground cloud as the outer edge of the Taurus molecular cloud. Between the Perseus and Taurus molecular clouds, we identify a lower-density ellipsoidal dust cavity with a size of 100–160 pc. This dust cavity is located at l = 170°, b = −20°, and d = 240 pc, which corresponds to an HI shell generally associated with the Per OB2 association. The two-component polarization signature observed toward the Perseus molecular cloud can therefore be explained by a combination of the plane-of-sky orientations of the magnetic field both at the front and at the back of this dust cavity.

[1]  S. Bontemps,et al.  Herschel Gould Belt Survey Observations of Dense Cores in the Cepheus Flare Clouds , 2020, The Astrophysical Journal.

[2]  Astrophysics,et al.  Physical properties of the ambient medium and of dense cores in the Perseus star-forming region derived from Herschel Gould Belt Survey observations , 2020, Astronomy & Astrophysics.

[3]  Lei Zhu,et al.  The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333 , 2020, The Astrophysical Journal.

[4]  A. Dambis,et al.  Distance scale for high-luminosity stars in OB associations and in field with Gaia DR2. Spurious systematic motions , 2020, Astrophysics and Space Science.

[5]  T. Henning,et al.  Star–Gas Surface Density Correlations in 12 Nearby Molecular Clouds. I. Data Collection and Star-sampled Analysis , 2020, The Astrophysical Journal.

[6]  A. Sicilia-Aguilar,et al.  A 3D view of the Taurus star-forming region by Gaia and Herschel , 2020, Astronomy & Astrophysics.

[7]  T. Ensslin,et al.  Resolving nearby dust clouds , 2020, 2004.06732.

[8]  J. D. Soler,et al.  Could bow-shaped magnetic morphologies surround filamentary molecular clouds? , 2019, Astronomy & Astrophysics.

[9]  Yang Su,et al.  Molecular Cloud Distances Based on the MWISP CO Survey and Gaia DR2 , 2019, The Astrophysical Journal.

[10]  Juan D. Soler,et al.  Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure (Corrigendum) , 2019, Astronomy & Astrophysics.

[11]  Lei Zhu,et al.  The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region , 2019, The Astrophysical Journal.

[12]  Shu Wang,et al.  The Optical to Mid-infrared Extinction Law Based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys , 2019, The Astrophysical Journal.

[13]  D. Blinov,et al.  Extreme starlight polarization in a region with highly polarized dust emission , 2019, Astronomy & Astrophysics.

[14]  B. Valette,et al.  Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc , 2019, Astronomy & Astrophysics.

[15]  A. Goodman,et al.  A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition , 2019, The Astrophysical Journal.

[16]  Shu-ichiro Inutsuka,et al.  The Role of Magnetic Field in Molecular Cloud Formation and Evolution , 2019, Front. Astron. Space Sci..

[17]  Hua-b. Li,et al.  A Comparison between Magnetic Field Directions Inferred from Planck and Starlight Polarimetry toward Gould Belt Clouds , 2019, The Astrophysical Journal.

[18]  T. Ensslin,et al.  Charting nearby dust clouds using Gaia data only (Corrigendum) , 2019, Astronomy & Astrophysics.

[19]  P. Andre',et al.  Probing accretion of ambient cloud material into the Taurus B211/B213 filament , 2018, Astronomy & Astrophysics.

[20]  T. Henning,et al.  Star-forming content of the giant molecular filaments in the Milky Way , 2018, Astronomy & Astrophysics.

[21]  M. López-Corredoira,et al.  Gaia-DR2 extended kinematical maps , 2018, Astronomy & Astrophysics.

[22]  A. Lazarian,et al.  Magnetic Properties of Dust Grains, Effect of Precession, and Radiative Torque Alignment , 2018, The Astrophysical Journal.

[23]  S. Potter,et al.  Demonstration of Magnetic Field Tomography with Starlight Polarization toward a Diffuse Sightline of the ISM , 2018, The Astrophysical Journal.

[24]  N. Evans,et al.  The Gould’s Belt Distances Survey (GOBELINS). V. Distances and Kinematics of the Perseus Molecular Cloud , 2018, The Astrophysical Journal.

[25]  J. Rizzo,et al.  ALMA imaging of the nascent planetary nebula IRAS 15103–5754 , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  P. Hennebelle,et al.  The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave , 2018 .

[27]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[28]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[29]  A. Goodman,et al.  Mapping Distances across the Perseus Molecular Cloud Using CO Observations, Stellar Photometry, and Gaia DR2 Parallax Measurements , 2018, The Astrophysical Journal.

[30]  M. Tahani,et al.  Helical magnetic fields in molecular clouds? , 2018, Astronomy & Astrophysics.

[31]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[32]  P. Hennebelle,et al.  Magnetic field morphology in nearby molecular clouds as revealed by starlight and submillimetre polarization , 2016, 1605.09371.

[33]  N. Peretto,et al.  A census of dense cores in the Taurus L1495 cloud from the Herschel Gould Belt Survey , 2016, 1602.03143.

[34]  M. Lombardi,et al.  Herschel-Planck dust optical depth and column density maps - II. Perseus , 2015, 1511.08503.

[35]  John E. Vaillancourt,et al.  Interstellar Dust Grain Alignment , 2015 .

[36]  N. Peretto,et al.  A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey , 2015, 1507.05926.

[37]  C. Bailer-Jones,et al.  Estimating Distances from Parallaxes , 2015, 1507.02105.

[38]  G. W. Pratt,et al.  Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds , 2015, 1502.04123.

[39]  N. Evans,et al.  STAR FORMATION RELATIONS IN NEARBY MOLECULAR CLOUDS , 2014, 1401.3287.

[40]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[41]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[42]  K. Min,et al.  FAR-ULTRAVIOLET OBSERVATIONS OF THE TAURUS–PERSEUS–AURIGA COMPLEX , 2013, 1301.5433.

[43]  G. Farrar,et al.  A NEW MODEL OF THE GALACTIC MAGNETIC FIELD , 2012, 1204.3662.

[44]  M. Lombardi,et al.  STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS , 2011, 1112.4466.

[45]  J. Acosta-Pulido,et al.  INFRARED AND OPTICAL POLARIMETRY AROUND THE LOW-MASS STAR-FORMING REGION NGC 1333 IRAS 4A , 2011, 1105.1300.

[46]  M. Lombardi,et al.  ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.

[47]  N. Evans,et al.  THE STAR FORMATION RATE AND GAS SURFACE DENSITY RELATION IN THE MILKY WAY: IMPLICATIONS FOR EXTRAGALACTIC STUDIES , 2010, 1009.1621.

[48]  Brenda C. Matthews,et al.  THE LEGACY OF SCUPOL: 850 μm IMAGING POLARIMETRY FROM 1997 TO 2005 , 2009 .

[49]  F. Özel,et al.  The relation between optical extinction and hydrogen column density in the Galaxy , 2009 .

[50]  A. Goodman,et al.  The Perseus Cloud , 2008 .

[51]  R. Crutcher Magnetic fields in molecular clouds , 2007 .

[52]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[53]  A. Lazarian,et al.  Radiative torque alignment: essential physical processes , 2007, 0707.3645.

[54]  F. Bensch,et al.  A KOSMA 7 deg$\mathsf{^{2}}$ $\mathsf{^{13}}$CO 2–1 and $\mathsf{^{12}}$CO 3–2 survey of the Perseus cloud - I. Structure analysis , 2006 .

[55]  M. Lombardi,et al.  The COMPLETE Survey of Star-Forming Regions: Phase I Data , 2006, astro-ph/0602542.

[56]  D. Johnstone,et al.  The Large- and Small-Scale Structures of Dust in the Star-forming Perseus Molecular Cloud , 2006, astro-ph/0602089.

[57]  J. Foster,et al.  The COMPLETE Nature of the Warm Dust Shell in Perseus , 2006, astro-ph/0601692.

[58]  D. Johnstone,et al.  An Extinction Threshold for Protostellar Cores in Ophiuchus , 2004, astro-ph/0406640.

[59]  Kurt Hornik,et al.  Testing and dating of structural changes in practice , 2003, Comput. Stat. Data Anal..

[60]  B. Matthews,et al.  Magnetic Fields in Star-forming Molecular Clouds. V. Submillimeter Polarization of the Barnard 1 Dark Cloud , 2002, astro-ph/0205328.

[61]  Achim Zeileis,et al.  Strucchange: An R package for testing for structural change in linear regression models , 2002 .

[62]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[63]  A. Kawamura,et al.  A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .

[64]  C. Heiles A Holistic View of the Magnetic Field in the Eridanus/Orion Region , 1997 .

[65]  S. Miyama,et al.  A Production Mechanism for Clusters of Dense Cores , 1997 .

[66]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[67]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996, astro-ph/9605046.

[68]  Alyssa A. Goodman,et al.  Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus , 1990 .

[69]  K. Černis Interstellar extinction in the vicinity of the reflection nebula NGC 1333 in Perseus , 1990 .

[70]  M. Tamura,et al.  Infrared polarimetry of dark clouds. III: The relationship between the magnetic field and star formation in the NGC 1333 region , 1988 .

[71]  P. Thaddeus,et al.  A CO survey of the dark nebulae in Perseus, Taurus, and Auriga , 1987 .

[72]  W. Stein Infrared radiation from interstellar grains. , 1966 .

[73]  J. Ostriker The Equilibrium of Polytropic and Isothermal Cylinders. , 1964 .

[74]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[75]  L. Davis,et al.  The Strength of Interstellar Magnetic Fields , 1951 .