Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics.

Retinal and choroidal vascular imaging is a key to the better understanding and diagnosis of eye diseases. To achieve comprehensive three-dimensional capillary imaging, we used an enhanced vascular imaging technique, so called adaptive optics optical coherence angiography (AO-OCA). AO-OCA enables in vivo high-resolution and high-contrast micro-vascular imaging by detecting Doppler frequency shifts. Using this technique, the retinal and choroidal vasculatures of healthy subjects were imaged. The results show that both intensity and Doppler power images have sufficient contrast to discriminate almost all vasculatures from the static tissue. However, the choriocapillaris, pre-arterioles, and post-venules in the Sattler layer were more contrasted by the Doppler technique. In conclusion, AO-OCA enables three-dimensional capillary imaging, and is especially useful for the detection of the choriocapillaris and choroidal capillary network.

[1]  S. Inoué,et al.  Foundations of Confocal Scanned Imaging in Light Microscopy , 2006 .

[2]  Byeong Ha Lee,et al.  High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization. , 2012, Optics express.

[3]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[4]  Reza Motaghiannezam,et al.  Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography , 2012, Biomedical optics express.

[5]  E S Gragoudas,et al.  Adverse reactions due to indocyanine green. , 1994, Ophthalmology.

[6]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[7]  M. Tso,et al.  Angioarchitecture of the human choroid. , 1987, Archives of ophthalmology.

[8]  Robert J Zawadzki,et al.  Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. , 2009, Optics express.

[9]  Scot S. Olivier,et al.  Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging , 2011, Biomedical optics express.

[10]  R. Leitgeb,et al.  Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. , 2011, Optics express.

[11]  W. Drexler,et al.  In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. , 2005, Optics express.

[12]  Barry Cense,et al.  Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. , 2011, Investigative ophthalmology & visual science.

[13]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[14]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[15]  Toco Y P Chui,et al.  Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels. , 2011, Investigative ophthalmology & visual science.

[16]  Lei Wang,et al.  Frequency domain phase-resolved optical Doppler and Doppler variance tomography , 2004 .

[17]  S. Burns,et al.  In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. , 2008, Optics express.

[18]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[19]  S. Yun,et al.  Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. , 2005, Optics express.

[20]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[21]  Edmund Koch,et al.  Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[23]  J. Fujimoto,et al.  High-speed optical coherence domain reflectometry. , 1992, Optics letters.

[24]  Vijaysekhar Jayaraman,et al.  MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging , 2012, Photonics West - Biomedical Optics.

[25]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[26]  Kazuhiro Sasaki,et al.  Extended depth of focus adaptive optics spectral domain optical coherence tomography , 2012, Biomedical optics express.

[27]  J. Nelson,et al.  Characterization of fluid flow velocity by optical Doppler tomography. , 1995, Optics letters.

[28]  R S Sobel,et al.  Fluorescein angiography complication survey. , 1986, Ophthalmology.

[29]  E. Stefánsson,et al.  The impact of ocular blood flow in glaucoma , 2002, Progress in Retinal and Eye Research.

[30]  A. Roorda,et al.  Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. , 2005, Ophthalmology.

[31]  J. Slakter,et al.  Adverse Reactions due to Indocyanine Green , 1994 .

[32]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[33]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[34]  S. Wu,et al.  Adler's Physiology of the Eye , 2002 .

[35]  Austin Roorda,et al.  Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[36]  T. Gardner,et al.  Retinal angiogenesis in development and disease , 2005, Nature.

[37]  Kazuhiro Sasaki,et al.  Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography. , 2010, Optics express.

[38]  Joseph A. Izatt,et al.  Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming , 2012, Biomedical optics express.

[39]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[40]  Austin Roorda,et al.  Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy. , 2011, Journal of biomedical optics.

[41]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[42]  Ravi S. Jonnal,et al.  Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics , 2011, Biomedical optics express.

[43]  Phillip Bedggood,et al.  Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. , 2008, Journal of biomedical optics.

[44]  Daniel X Hammer,et al.  Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. , 2008, Investigative ophthalmology & visual science.

[45]  Ruikang K. Wang,et al.  Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. , 2011, Journal of biomedical optics.

[46]  J. Izatt,et al.  Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. , 2000, Optics letters.

[47]  M. Wojtkowski,et al.  Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[48]  Barry Cense,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. , 2003, Optics express.

[49]  Boris Hermann,et al.  Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. , 2010, Optics express.

[50]  R W Flower,et al.  Variability in choriocapillaris blood flow distribution. , 1995, Investigative ophthalmology & visual science.

[51]  Austin Roorda,et al.  Noninvasive visualization and analysis of parafoveal capillaries in humans. , 2010, Investigative ophthalmology & visual science.

[52]  Robert J Zawadzki,et al.  Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. , 2008, Optics express.

[53]  Robert J Zawadzki,et al.  Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[54]  D. Snodderly,et al.  Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis) , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  Bernd Hamann,et al.  Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. , 2009, Optics express.

[56]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[57]  Charles E. Riva,et al.  Regulation of retinal blood flow in health and disease , 2008, Progress in Retinal and Eye Research.

[58]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[59]  J. Barton,et al.  Flow measurement without phase information in optical coherence tomography images. , 2005, Optics express.

[60]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. , 2000, Optics letters.

[61]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[62]  Gangjun Liu,et al.  Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging , 2011, Optics express.

[63]  Maciej Wojtkowski,et al.  Scanning protocols dedicated to smart velocity ranging in spectral OCT. , 2009, Optics express.

[64]  Risto Myllylä,et al.  Automated segmentation of the macula by optical coherence tomography. , 2009, Optics express.

[65]  P. Artal,et al.  Chromatic aberration correction of the human eye for retinal imaging in the near infrared. , 2006, Optics express.

[66]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[67]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[68]  Shuichi Makita,et al.  Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. , 2011, Optics express.

[69]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[70]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[71]  Amiram Grinvald,et al.  Special report: Noninvasive multi-parameter functional optical imaging of the eye. , 2005, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[72]  Marco A Zarbin,et al.  Current concepts in the pathogenesis of age-related macular degeneration. , 2004, Archives of ophthalmology.

[73]  W. Drexler,et al.  Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. , 2009, Optics express.

[74]  R. Flower,et al.  Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells. , 2008, Investigative ophthalmology & visual science.