Synaptic and peptidergic connectome of a neurosecretory centre in the annelid brain

Neurosecretory centres in animal brains use peptidergic signalling to influence physiology and behaviour. Understanding neurosecretory centre function requires mapping cell types, synapses, and peptidergic networks. Here we use electron microscopy and gene expression mapping to analyse the synaptic and peptidergic connectome of an entire neurosecretory centre. We mapped 78 neurosecretory neurons in the brain of larval Platynereis dumerilii, a marine annelid. These neurons form an anterior neurosecretory organ expressing many neuropeptides, including hypothalamic peptide orthologues and their receptors. Analysis of peptide-receptor pairs revealed sparsely connected networks linking specific neuronal subsets. We experimentally analysed one peptide-receptor pair and found that a neuropeptide can couple neurosecretory and synaptic brain signalling. Our study uncovered extensive non-synaptic signalling within a neurosecretory centre and its connection to the synaptic brain.

[1]  Detlev Arendt,et al.  Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of Platynereis dumerilii , 2017, Proceedings of the National Academy of Sciences.

[2]  F. Keijzer,et al.  The animal sensorimotor organization: a challenge for the environmental complexity thesis , 2017, Biology & Philosophy.

[3]  G. Jékely,et al.  Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva , 2017, bioRxiv.

[4]  Evan Z. Macosko,et al.  A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types , 2017, Nature Neuroscience.

[5]  M. Elphick,et al.  Localization of Neuropeptide Gene Expression in Larvae of an Echinoderm, the Starfish Asterias rubens , 2016, Front. Neurosci..

[6]  Edward T. Bullmore,et al.  The Multilayer Connectome of Caenorhabditis elegans , 2016, PLoS Comput. Biol..

[7]  G. Jékely,et al.  Towards a systems-level understanding of development in the marine annelid Platynereis dumerilii. , 2016, Current opinion in genetics & development.

[8]  G. Jékely,et al.  A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes , 2015, bioRxiv.

[9]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[10]  G. Jékely,et al.  Large-Scale Combinatorial Deorphanization of Platynereis Neuropeptide GPCRs. , 2015, Cell reports.

[11]  G. Jékely,et al.  Object-based representation and analysis of light and electron microscopic volume data using Blender , 2015, BMC Bioinformatics.

[12]  N. Randel,et al.  Inter-individual stereotypy of the Platynereis larval visual connectome , 2015, eLife.

[13]  Dirk Bucher,et al.  Neuropeptide Receptor Transcript Expression Levels and Magnitude of Ionic Current Responses Show Cell Type-Specific Differences in a Small Motor Circuit , 2015, The Journal of Neuroscience.

[14]  J. Marioni,et al.  High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin , 2015, Nature Biotechnology.

[15]  S. Ryu,et al.  Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish , 2015, Front. Neuroanat..

[16]  M. Nikitin Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. , 2015, General and comparative endocrinology.

[17]  John C. Marioni,et al.  Identifying Cell Types from Spatially Referenced Single-Cell Expression Datasets , 2014, PLoS Comput. Biol..

[18]  C. Winters,et al.  Novel Cell Types, Neurosecretory Cells, and Body Plan of the Early-Diverging Metazoan Trichoplax adhaerens , 2014, Current Biology.

[19]  Gáspár Jékely,et al.  Neuronal connectome of a sensory-motor circuit for visual navigation , 2014, eLife.

[20]  Raju Tomer,et al.  Larval body patterning and apical organs are conserved in animal evolution , 2014, BMC Biology.

[21]  B. Maček,et al.  The neuropeptide complement of the marine annelid Platynereis dumerilii , 2013, BMC Genomics.

[22]  D. Arendt,et al.  The bilaterian forebrain: an evolutionary chimaera , 2013, Current Opinion in Neurobiology.

[23]  J. Betley,et al.  Neural circuits and motivational processes for hunger , 2013, Current Opinion in Neurobiology.

[24]  J. Joly,et al.  Molecular evolution of peptidergic signaling systems in bilaterians , 2013, Proceedings of the National Academy of Sciences.

[25]  G. Jékely Global view of the evolution and diversity of metazoan neuropeptide signaling , 2013, Proceedings of the National Academy of Sciences.

[26]  S. Tunaru,et al.  Conserved MIP receptor–ligand pair regulates Platynereis larval settlement , 2013, Proceedings of the National Academy of Sciences.

[27]  G. Jékely,et al.  Whole-body gene expression pattern registration in Platynereis larvae , 2012, EvoDevo.

[28]  E. Marder Neuromodulation of Neuronal Circuits: Back to the Future , 2012, Neuron.

[29]  G. Jékely,et al.  Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox , 2012, EvoDevo.

[30]  R. Heinrich,et al.  Homology of insect corpora allata and vertebrate adenohypophysis? , 2012, Arthropod structure & development.

[31]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  T. Münch,et al.  Neuropeptides regulate swimming depth of Platynereis larvae , 2011, Proceedings of the National Academy of Sciences.

[33]  Jing W. Wang,et al.  Presynaptic Facilitation by Neuropeptide Signaling Mediates Odor-Driven Food Search , 2011, Cell.

[34]  R. P. Kostyuchenko,et al.  Six3 demarcates the anterior-most developing brain region in bilaterian animals , 2010, EvoDevo.

[35]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[36]  H. Hausen,et al.  Mechanism of phototaxis in marine zooplankton , 2008, Nature.

[37]  W. Stein,et al.  Divergent co‐transmitter actions underlie motor pattern activation by a modulatory projection neuron , 2007, The European journal of neuroscience.

[38]  Kristin Tessmar-Raible The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. , 2007, Seminars in cell & developmental biology.

[39]  H. Hausen,et al.  Conserved Sensory-Neurosecretory Cell Types in Annelid and Fish Forebrain: Insights into Hypothalamus Evolution , 2007, Cell.

[40]  V. Hartenstein The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. , 2006, The Journal of endocrinology.

[41]  Akihisa Terakita,et al.  The opsins , 2005, Genome Biology.

[42]  D. Clapham,et al.  TRP ion channels in the nervous system , 2004, Current Opinion in Neurobiology.

[43]  Eve Marder,et al.  Colocalized Neuropeptides Activate a Central Pattern Generator by Acting on Different Circuit Targets , 2002, The Journal of Neuroscience.

[44]  L. Page Apical Sensory Organ in Larvae of the Patellogastropod Tectura scutum , 2002, The Biological Bulletin.

[45]  G. Korge,et al.  Innervation of the ring gland of Drosophila melanogaster , 2001, The Journal of comparative neurology.

[46]  C. Hammond,et al.  Growth hormone secretagogues and hypothalamic networks , 2001, Endocrine.

[47]  M. Hadfield,et al.  The apical sensory organ of a gastropod veliger is a receptor for settlement cues. , 2000, The Biological bulletin.

[48]  R. Průša,et al.  [Orexins and orexin receptors]. , 1999, Ceskoslovenska fysiologie.

[49]  E Marder,et al.  Different Proctolin Neurons Elicit Distinct Motor Patterns from a Multifunctional Neuronal Network , 1999, The Journal of Neuroscience.

[50]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[51]  S. Carr,et al.  Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior , 1998, Cell.

[52]  G. Purschke Ultrastructure of Nuchal Organs in Polychaetes (Annelida) — New Results and Review , 1997 .

[53]  R. Burke,et al.  Localization of a SALMFamide Neuropeptide in the Larval Nervous System of the Sand Dollar Dendraster excentricus , 1992 .

[54]  F. Chia,et al.  Fine structure of the cephalic sensory organ in the larva of the nudibranch Rostanga pulchra (Mollusca, Opisthobranchia, Nudibranchia) , 1984, Zoomorphology.

[55]  B. Vígh,et al.  Intra- and extraganglionic nerve endings formed by neurosecretory cells of the cerebral ganglion of the earthworm (Lumbricus terrestris L.) , 1977, Cell and Tissue Research.