Twin-lattice atom interferometry

Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors.

[1]  A. Landragin,et al.  Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. , 2009, Physical review letters.

[2]  Zhongkun Hu,et al.  Quantum tiltmeter with atom interferometry , 2017 .

[3]  P. Haslinger,et al.  Efficient Adiabatic Spin-Dependent Kicks in an Atom Interferometer. , 2018, Physical review letters.

[5]  S. Chiow,et al.  102ℏk large area atom interferometers. , 2011, Physical review letters.

[6]  John K. Stockton,et al.  Absolute geodetic rotation measurement using atom interferometry. , 2011, Physical review letters.

[7]  Holger Ahlers,et al.  Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[8]  B. Canuel,et al.  Six-axis inertial sensor using cold-atom interferometry. , 2006, Physical review letters.

[9]  N. Yao,et al.  Bloch beamsplitters and dual-lattice methods for atom interferometry , 2019, 1907.05994.

[10]  Savas Dimopoulos,et al.  Gravitational wave detection with atom interferometry , 2007, 0712.1250.

[11]  J. Reichel,et al.  Bloch Oscillations of Atoms in an Optical Potential , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[12]  C. Schwob,et al.  A precise measurement of h/m_{Rb} using Bloch oscillations in a vertical optical lattice: determination of the fine structure constant , 2006 .

[13]  Y. Castin,et al.  Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams , 1997 .

[14]  S. Chiow,et al.  Atom interferometers with scalable enclosed area. , 2009, Physical review letters.

[15]  W. Schleich,et al.  Double Bragg diffraction: A tool for atom optics , 2013, 1308.5205.

[16]  A. Landragin,et al.  Interleaved atom interferometry for high-sensitivity inertial measurements , 2018, Science Advances.

[17]  W. Schleich,et al.  Double Bragg Interferometry. , 2016, Physical review letters.

[18]  W. Schleich,et al.  Overcoming loss of contrast in atom interferometry due to gravity gradients , 2014, 1401.7699.

[19]  W. Schleich,et al.  Scalable, symmetric atom interferometer for infrasound gravitational wave detection. , 2019, 1909.01951.

[20]  Sofus L. Kristensen,et al.  Probing gravity by holding atoms for 20 seconds , 2019, Science.

[21]  P. Cladé,et al.  Observation of Extra Photon Recoil in a Distorted Optical Field. , 2017, Physical review letters.

[22]  A. Peters,et al.  Bose-Einstein Condensation in Microgravity , 2010, Science.

[23]  Peng Xu,et al.  ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna , 2019, International Journal of Modern Physics D.

[24]  N. Zahzam,et al.  Local gravity measurement with the combination of atom interferometry and Bloch oscillations , 2011, 1109.3605.

[25]  A Bose-Einstein condensate in an optical lattice , 2002, cond-mat/0206063.

[26]  M. Merzougui,et al.  Exploring gravity with the MIGA large scale atom interferometer , 2017, Scientific Reports.

[27]  Alain Miffre,et al.  Diffraction phases in atom interferometry , 2002, quant-ph/0211192.

[28]  Holger Müller,et al.  High-Resolution Atom Interferometers with Suppressed Diffraction Phases. , 2014, Physical review letters.

[29]  Holger Muller,et al.  Controlling the multiport nature of Bragg diffraction in atom interferometry , 2016, 1609.06344.

[30]  Mark A. Kasevich,et al.  Adiabatic-rapid-passage multiphoton Bragg atom optics , 2012 .

[31]  N. Yao,et al.  Symmetric Bloch oscillations of matter waves , 2019 .

[32]  L. Salasnich,et al.  Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates , 2002 .

[33]  Joseph J. Hope,et al.  Why momentum width matters for atom interferometry with Bragg pulses , 2011, 1110.2901.

[34]  W. Chaibi,et al.  Low frequency gravitational wave detection with ground-based atom interferometer arrays , 2016, 1601.00417.

[35]  Steven Chu,et al.  Atom interferometry with up to 24-photon-momentum-transfer beam splitters. , 2007, Physical review letters.

[36]  M. Oberthaler,et al.  Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.

[37]  W. Schleich,et al.  Composite-light-pulse technique for high-precision atom interferometry. , 2015, Physical review letters.

[38]  K. Poulios,et al.  Hypersonic Bose–Einstein condensates in accelerator rings , 2019, Nature.

[39]  P. Silvestrin,et al.  A Spaceborne Gravity Gradiometer Concept Based on Cold Atom Interferometers for Measuring Earth’s Gravity Field , 2014, 1406.0765.

[40]  A. Landragin,et al.  Continuous Cold-Atom Inertial Sensor with 1  nrad/sec Rotation Stability. , 2016, Physical review letters.

[41]  Géza Tóth,et al.  Entanglement between two spatially separated atomic modes , 2017, Science.

[42]  P. Cladé,et al.  New determination of the fine structure constant and test of the quantum electrodynamics , 2010, 2012 Conference on Lasers and Electro-Optics (CLEO).

[43]  P. Cladé,et al.  Large momentum beam splitter using Bloch oscillations. , 2009, Physical review letters.

[44]  M. Kasevich,et al.  Matter wave lensing to picokelvin temperatures. , 2014, Physical review letters.

[45]  Chenghui Yu,et al.  Measurement of the fine-structure constant as a test of the Standard Model , 2018, Science.

[46]  M. Popp,et al.  A high-flux BEC source for mobile atom interferometers , 2015, 1501.00403.

[47]  Achim Peters,et al.  Mobile quantum gravity sensor with unprecedented stability , 2015, 1512.05660.

[48]  M. Kasevich,et al.  Quantum superposition at the half-metre scale , 2015, Nature.

[49]  Wilkinson,et al.  Observation of atomic Wannier-Stark ladders in an accelerating optical potential. , 1996, Physical review letters.

[50]  Ritva Keski-Kuha,et al.  An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO) , 2010, 1009.2702.

[51]  M. Merzougui,et al.  ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research , 2019, Classical and Quantum Gravity.

[52]  W. Schleich,et al.  Atom-Chip Fountain Gravimeter. , 2016, Physical review letters.

[53]  A. I. Khizhnyak,et al.  Wide-angle diffraction of the laser beam by a sharp edge , 2004 .

[54]  Karl Ulrich Schreiber,et al.  Invited review article: Large ring lasers for rotation sensing. , 2013, The Review of scientific instruments.

[55]  Mattias Johnsson,et al.  80hk momentum separation with Bloch oscillations in an optically guided atom interferometer , 2013, 1307.0268.

[56]  F. Sorrentino,et al.  Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.

[57]  T. Arpornthip,et al.  Quantum Rotation Sensing with Dual Sagnac Interferometers in an Atom-Optical Waveguide. , 2019, Physical review letters.

[58]  M. Kasevich,et al.  Phase Shift in an Atom Interferometer due to Spacetime Curvature across its Wave Function. , 2017, Physical review letters.

[59]  M. Prentiss,et al.  Demonstration of an area-enclosing guided-atom interferometer for rotation sensing. , 2006, Physical review letters.

[60]  Benjamin Plotkin-Swing,et al.  Three-Path Atom Interferometry with Large Momentum Separation. , 2017, Physical review letters.