An innovative integral field unit upgrade with 3D-printed micro-lenses for the RHEA at Subaru
暂无分享,去创建一个
Julien Lozi | Olivier Guyon | Oliver Sawodny | Nemanja Jovanovic | Jörg-Uwe Pott | Michael J. Ireland | Sébastien Vievard | Tobias Feger | David W. Coutts | Christian Koos | Sergio G. Leon-Saval | Matthias Blaicher | Christian Schwab | Sebastiaan Y. Haffert | Philipp Hottinger | Theodoros Anagnos | Andreas Quirrenbach | Barnaby Norris | Christopher H. Betters | Pascal Maier | Itandehui Gris-Sánchez | Stephanos Yerolatsitis | Tim A. Birks | Adam D. Rains | Robert J. Harris | Blaise C. Kuo Tiong | Yulin Xu | Moritz Straub | Philip L. Neureuther
[1] Shane Jacobson,et al. Extra-solar planets exploration using frequency comb: Infrared Doppler instrument for the Subaru telescope (IRD) , 2012, 2015 Optical Fiber Communications Conference and Exhibition (OFC).
[2] Robert J. Harris,et al. Micro-lens arrays as tip-tilt sensor for single mode fiber coupling , 2018, Astronomical Telescopes + Instrumentation.
[3] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[4] Olivier Guyon,et al. Performance of Subaru adaptive optics system AO188 , 2010, Astronomical Telescopes + Instrumentation.
[5] Frantz Martinache,et al. Wavefront Sensing and Control R&D on the SCExAO Testbed , 2020 .
[6] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[7] E. N. Hubbard,et al. Operation of a long fused silica fiber as a link between telescope and spectrograph. , 1979 .
[8] J. Allington-Smith. Basic principles of integral field spectroscopy , 2006 .
[9] Wolfgang Freude,et al. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems. , 2017, Optics express.
[10] Olivier Guyon,et al. Precision single mode fibre integral field spectroscopy with the RHEA spectrograph , 2016, Astronomical Telescopes + Instrumentation.
[11] Olivier Guyon,et al. Commissioning status of Subaru laser guide star adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.
[12] J. L. E. DREYER,et al. Astronomical Spectroscopy , 1894, Nature.
[13] Olivier Guyon,et al. Current status of the laser guide star adaptive optics system for Subaru Telescope , 2008, Astronomical Telescopes + Instrumentation.
[14] G. Perrin,et al. The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.
[15] O. Guyon,et al. Efficient injection from large telescopes into single-mode fibres: Enabling the era of ultra-precision astronomy , 2017, 1706.08821.
[16] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[17] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[18] A. Hopkins,et al. The Sydney-AAO Multi-object Integral field spectrograph , 2011, 1112.3367.
[19] W. Freude,et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration , 2018 .
[20] J R. Powell. Application Of Optical Fibres To Astronomical Instrumentation , 1984, Astronomical Telescopes and Instrumentation.
[21] Michael J. Ireland,et al. RHEA: the ultra-compact replicable high-resolution exoplanet and Asteroseismology spectrograph , 2014, Astronomical Telescopes and Instrumentation.
[22] Joss Bland-Hawthorn,et al. The Photonic TIGER: a multicore fiber-fed spectrograph , 2012, Other Conferences.
[23] James Roger P. Angel,et al. Optical spectroscopy with a near-single-mode fiber-feed and adaptive optics , 1998, Astronomical Telescopes and Instrumentation.