PARALLEL FINITE ELEMENT LAPLACE TRANSFORM METHOD FOR THE NON-EQUILIBRIUM GROUNDWATER TRANSPORT EQUATION

[1]  Giorgio Pini,et al.  Transpose-free Lanczos-type Schemes on Transputer Network , 1994, Parallel Algorithms Appl..

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  A. N. Stokes,et al.  An Improved Method for Numerical Inversion of Laplace Transforms , 1982 .

[4]  M. V. Genuchten,et al.  Mass transfer studies in sorbing porous media. I. Analytical solutions , 1976 .

[5]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[6]  E. A. Sudicky,et al.  The Laplace Transform Galerkin Technique: A time‐continuous finite element theory and application to mass transport in groundwater , 1989 .

[7]  E. A. Sudicky,et al.  The Laplace Transform Galerkin technique for efficient time-continuous solution of solute transport in double-porosity media , 1990 .

[8]  A. Peters,et al.  Non‐symmetric CG‐like schemes and the finite element solution of the advection–dispersion equation , 1993 .

[9]  Giuseppe Gambolati,et al.  On boundary conditions and point sources in the finite element integration of the transport equation , 1989 .

[10]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[11]  Comparison of solution approaches for the two-domain model of nonequilibrium transport in porous media , 1996 .

[12]  G. Gambolati,et al.  Numerical Integration Methods for the Dual Porosity Model in Sorbing Porous Media , 1994 .

[13]  Robert W. Gillham,et al.  Sorption nonideality during organic contaminant transport in porous media , 1989 .

[14]  Kenny S. Crump,et al.  Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation , 1976, J. ACM.