DefSense: Computational Design of Customized Deformable Input Devices

We present a novel optimization-based algorithm for the design and fabrication of customized, deformable input devices, capable of continuously sensing their deformation. We propose to embed piezoresistive sensing elements into flexible 3D printed objects. These sensing elements are then utilized to recover rich and natural user interactions at runtime. Designing such objects is a challenging and hard problem if attempted manually for all but the simplest geometries and deformations. Our method simultaneously optimizes the internal routing of the sensing elements and computes a mapping from low-level sensor readings to user-specified outputs in order to minimize reconstruction error. We demonstrate the power and flexibility of the approach by designing and fabricating a set of flexible input devices. Our results indicate that the optimization-based design greatly outperforms manual routings in terms of reconstruction accuracy and thus interaction fidelity.

[1]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[2]  Antti Oulasvirta,et al.  MenuOptimizer: interactive optimization of menu systems , 2013, UIST.

[3]  Ivan Poupyrev,et al.  Sensing through structure: designing soft silicone sensors , 2010, TEI.

[4]  Antti Oulasvirta,et al.  Investigating the Dexterity of Multi-Finger Input for Mid-Air Text Entry , 2015, CHI.

[5]  Chris Harrison,et al.  3D Printing Pneumatic Device Controls with Variable Activation Force Capabilities , 2015, CHI.

[6]  Frank Clemens,et al.  Comparison of Piezoresistive Monofilament Polymer Sensors , 2014, Sensors.

[7]  Ivan Poupyrev,et al.  Printed optics: 3D printing of embedded optical elements for interactive devices , 2012, UIST.

[8]  Antti Oulasvirta,et al.  Improvements to keyboard optimization with integer programming , 2014, UIST.

[9]  Ivan Poupyrev,et al.  Gummi: a bendable computer , 2004, CHI '04.

[10]  Shumin Zhai,et al.  Optimizing Touchscreen Keyboards for Gesture Typing , 2015, CHI.

[11]  Jürgen Steimle,et al.  PrintScreen: fabricating highly customizable thin-film touch-displays , 2014, UIST.

[12]  Lee A. Danisch,et al.  Spatially continuous six-degrees-of-freedom position and orientation sensor , 1999, Other Conferences.

[13]  Scott E. Hudson,et al.  A Layered Fabric 3D Printer for Soft Interactive Objects , 2015, CHI.

[14]  Daniel M. Vogt,et al.  Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers , 2014, Advanced materials.

[15]  Lee A. Danisch,et al.  Spatially continuous six degree of freedom position and orientation sensor , 1999 .

[16]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[17]  Wojciech Matusik,et al.  Computational Light Routing , 2014, ACM Trans. Graph..

[18]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[19]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[20]  Barbara Stadlober,et al.  PyzoFlex: printed piezoelectric pressure sensing foil , 2012, UIST.

[21]  Akio Yamamoto,et al.  Shape recognition using piezoelectric thin films , 2003, IEEE International Conference on Industrial Technology, 2003.

[22]  S. Bauer,et al.  An All‐Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface , 2011, Advanced materials.

[23]  David Kim,et al.  FlexSense: a transparent self-sensing deformable surface , 2014, UIST.

[24]  Ivan Poupyrev,et al.  PAPILLON: designing curved display surfaces with printed optics , 2013, UIST.

[25]  George W. Fitzmaurice,et al.  Exploring interactive curve and surface manipulation using a bend and twist sensitive input strip , 1999, SI3D.

[26]  David A. Hutchins,et al.  A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors , 2012, PloS one.

[27]  Joseph A. Paradiso,et al.  PrintSense: a versatile sensing technique to support multimodal flexible surface interaction , 2014, CHI.

[28]  Ryan B. Wicker,et al.  Integrating stereolithography and direct print technologies for 3D structural electronics fabrication , 2012 .

[29]  Antti Oulasvirta,et al.  Toward optimal menu design , 2014, INTR.

[30]  Olga Sorkine-Hornung,et al.  Tangible and modular input device for character articulation , 2014, SIGGRAPH '14.

[31]  Pattie Maes,et al.  Flexpad: highly flexible bending interactions for projected handheld displays , 2013, CHI.

[32]  Björn Hartmann,et al.  A series of tubes: adding interactivity to 3D prints using internal pipes , 2014, UIST.

[33]  Wilmot Li,et al.  Lamello: Passive Acoustic Sensing for Tangible Input Components , 2015, CHI.