Local Signature Quantization by Sparse Coding

In 3D object retrieval it is very important to define reliable shape descriptors, which compactly characterize geometric properties of the underlying surface. To this aim two main approaches are considered: global, and local ones. Global approaches are effective in describing the whole object, while local ones are more suitable to characterize small parts of the shape. Some strategies to combine these two approaches have been proposed recently but still no consolidate work is available in this field. With this paper we address this problem and propose a new method based on sparse coding techniques. A set of local shape descriptors are collected from the shape. Then a dictionary is trained as generative model. In this fashion the dictionary is used as global shape descriptor for shape retrieval purposes. Preliminary experiments are performed on a standard dataset by showing a drastic improvement of the proposed method in comparison with well known local-to-global and global approaches.

[1]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Andrea Giachetti,et al.  Centers of Approximate Spherical Symmetry and Radial Symmetry Graphs , 2013, Eurographics.

[3]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[4]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[5]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[6]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[7]  Guillermo Sapiro,et al.  Sparse Modeling of Intrinsic Correspondences , 2012, Comput. Graph. Forum.

[8]  Thomas A. Funkhouser,et al.  Shape-based retrieval and analysis of 3D models , 2004, SIGGRAPH '04.

[9]  Yosi Keller,et al.  Scale-Invariant Features for 3-D Mesh Models , 2012, IEEE Transactions on Image Processing.

[10]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[11]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[12]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[13]  Thomas A. Funkhouser,et al.  Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[14]  Michele Tansella,et al.  A New Shape Diffusion Descriptor for Brain Classification , 2011, MICCAI.

[15]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[16]  Tobias Gurdan Sparse Modeling of Intrinsic Correspondences , 2014 .

[17]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[18]  Michele Tansella,et al.  Brain Morphometry by Probabilistic Latent Semantic Analysis , 2010, MICCAI.

[19]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[20]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[21]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[22]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[23]  Adrien Bartoli,et al.  Semantic Shape Context for the Registration of Multiple Partial 3D Views , 2009, BMVC.

[24]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[25]  Leonidas J. Guibas,et al.  Probabilistic fingerprints for shapes , 2006, SGP '06.

[26]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Thomas A. Funkhouser,et al.  Shape-based retrieval and analysis of 3d models , 2005, CACM.

[28]  Alexander M. Bronstein,et al.  Spectral descriptors for deformable shapes , 2011, ArXiv.

[29]  Umberto Castellani,et al.  Statistical 3D Shape Analysis by Local Generative Descriptors , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[31]  Andrea Fusiello,et al.  The bag of words approach for retrieval and categorization of 3D objects , 2010, The Visual Computer.

[32]  Radu Horaud,et al.  SHREC '11: Robust Feature Detection and Description Benchmark , 2011, 3DOR@Eurographics.

[33]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[34]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[35]  Umberto Castellani,et al.  Sparse points matching by combining 3D mesh saliency with statistical descriptors , 2008, Comput. Graph. Forum.

[36]  Paul Suetens,et al.  SHREC'10 Track: Non-rigid 3D Shape Retrieval , 2010, 3DOR@Eurographics.

[37]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[38]  Karthik Ramani,et al.  Three-dimensional shape searching: state-of-the-art review and future trends , 2005, Comput. Aided Des..