La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions

[1]  Tingshuai Li,et al.  Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions , 2021, Chinese Journal of Catalysis.

[2]  Abdullah M. Asiri,et al.  A magnetron sputtered Mo3Si thin film: an efficient electrocatalyst for N2reduction under ambient conditions , 2021 .

[3]  A. Mohamed,et al.  Dependence of photocatalysis on electron trapping in Ag-doped flowerlike rutile-phase TiO2 film by facile hydrothermal method , 2020 .

[4]  Yongsong Luo,et al.  Enabling electrochemical conversion of N2 to NH3 under ambient conditions by a CoP3 nanoneedle array , 2020 .

[5]  Abdullah M. Asiri,et al.  Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media , 2020, Nano Research.

[6]  Jie Song,et al.  Phosphorus cation substitution in TiO2 nanorods toward enhanced N2 electroreduction , 2020 .

[7]  Hongyan He,et al.  Engineering Surface Atomic Architecture of NiTe Nanocrystals Toward Efficient Electrochemical N2 Fixation , 2020, Advanced Functional Materials.

[8]  Cheng Tang,et al.  In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction , 2020, Advanced Energy Materials.

[9]  Yongping Zheng,et al.  Nanostructured and Boron-Doped Diamond as an Electrocatalyst for Nitrogen Fixation , 2020 .

[10]  Abdullah M. Asiri,et al.  Cu3P nanoparticle-reduced graphene oxide hybrid: an efficient electrocatalyst to realize N2-to-NH3 conversion under ambient conditions. , 2020, Chemical communications.

[11]  Abdullah M. Asiri,et al.  Identifying the Origin of Ti3+ Activity toward Enhanced Electrocatalytic N2 Reduction over TiO2 Nanoparticles Modulated by Mixed‐Valent Copper , 2020, Advanced materials.

[12]  Kang Wang,et al.  Vacancy induced photocatalytic activity of La doped In(OH)3 for CO2 reduction with water vapor , 2020 .

[13]  Xiaohui Guo,et al.  An oxygen vacancy-rich two-dimensional Au/TiO2 hybrid for synergistically enhanced electrochemical N2 activation and reduction , 2020, Journal of Materials Chemistry A.

[14]  Ke Chu,et al.  Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction , 2020 .

[15]  Guang Chen,et al.  Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: recent advances in catalyst development and performance improvement , 2020 .

[16]  Nageswara Rao Peela,et al.  Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting , 2020 .

[17]  Xuping Sun,et al.  Greatly Improving Electrochemical N2 Reduction over TiO2 Nanoparticle by Fe Doping. , 2019, Angewandte Chemie.

[18]  Shan Cheng,et al.  Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2 , 2019, Journal of Energy Chemistry.

[19]  Yousung Jung,et al.  Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction , 2019, Applied Catalysis B: Environmental.

[20]  B. Geng,et al.  Oxygen Vacancy–Enhanced Electrocatalytic Performances of TiO2 Nanosheets toward N2 Reduction Reaction , 2019, Advanced Materials Interfaces.

[21]  Tao Jiang,et al.  Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators , 2019, Materials Today.

[22]  Ke Chu,et al.  Electronically Coupled SnO2 Quantum Dots and Graphene for Efficient Nitrogen Reduction Reaction. , 2019, ACS applied materials & interfaces.

[23]  Gengfeng Zheng,et al.  Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation , 2019, Nature Communications.

[24]  Qi Guo,et al.  Theoretical Screening of Single-Atom-Embedded MoSSe Nanosheets for Electrocatalytic N2 Fixation , 2019, The Journal of Physical Chemistry C.

[25]  P. Shen,et al.  NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries , 2019, Chemical Engineering Journal.

[26]  Hao Wen,et al.  In Situ Hydrothermal Growth of TiO2 Nanoparticles on a Conductive Ti3C2T x MXene Nanosheet: A Synergistically Active Ti-Based Nanohybrid Electrocatalyst for Enhanced N2 Reduction to NH3 at Ambient Conditions. , 2019, Inorganic chemistry.

[27]  Young‐Kwon Park,et al.  Fabrication of Gd-La codoped TiO2 composite via a liquid phase plasma method and its application as visible-light photocatalysts , 2019, Applied Surface Science.

[28]  Zaichun Liu,et al.  La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition , 2019, Electrochimica Acta.

[29]  Faxing Wang,et al.  High‐Performance Electrocatalytic Conversion of N2 to NH3 Using Oxygen‐Vacancy‐Rich TiO2 In Situ Grown on Ti3C2Tx MXene , 2019, Advanced Energy Materials.

[30]  Ye Tian,et al.  Efficient electrocatalytic N2 reduction on CoO quantum dots , 2019, Journal of Materials Chemistry A.

[31]  Ya-Fen Wang,et al.  Application of recycled lanthanum-doped TiO2 immobilized on commercial air filter for visible-light photocatalytic degradation of acetone and NO , 2019, Applied Surface Science.

[32]  H. Xin,et al.  Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. , 2019, Angewandte Chemie.

[33]  Benhe Zhong,et al.  Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions , 2018, Nanoscale advances.

[34]  Jingguang G. Chen,et al.  Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles. , 2018, Journal of the American Chemical Society.

[35]  Baozhan Zheng,et al.  Enabling Effective Electrocatalytic N2 Conversion to NH3 by the TiO2 Nanosheets Array under Ambient Conditions. , 2018, ACS applied materials & interfaces.

[36]  Jiayin Yuan,et al.  Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. , 2018, Angewandte Chemie.

[37]  Claudio Ampelli,et al.  Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. , 2017, Angewandte Chemie.

[38]  Richard Dronskowski,et al.  LOBSTER: A tool to extract chemical bonding from plane‐wave based DFT , 2016, J. Comput. Chem..

[39]  R. Hamers,et al.  Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. , 2013, Nature materials.

[40]  H. Jónsson,et al.  A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. , 2012, Physical chemistry chemical physics : PCCP.

[41]  Robert Schlögl,et al.  Catalytic synthesis of ammonia-a "never-ending story"? , 2003, Angewandte Chemie.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[46]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[47]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[48]  G. Watt,et al.  Spectrophotometric Method for Determination of Hydrazine , 1952 .

[49]  Jun Luo,et al.  Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions , 2020 .