Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications.

In recent years, because of the narrow direct bandgap and outstanding carrier mobility, GaSb nanowires (NWs) have been extensively explored for various electronics and optoelectronics. Importantly, these p-channel nanowires can be potentially integrated with n-type InSb, InAs, or InGaAs NW devices via different NW transfer techniques to facilitate the III-V CMOS technology. However, until now, there have been very few works focusing on the electronic transport properties of GaSb NWs. Here, we successfully demonstrate the synthesis of crystalline, stoichiometric, and dense GaSb NWs on amorphous substrates, instead of the commonly used III-V crystalline substrates, InAs, or GaAs NW stems as others reported. The obtained NWs are found to grow via the VLS mechanism with a narrow distribution of diameter (220 ± 50 nm) uniformly along the entire NW length (>10 μm) with minimal tapering and surface coating. Notably, when configured into FETs, the NWs exhibit respectable electrical characteristics with the peak hole mobility of ~30 cm(2) V(-1) s(-1) and free hole concentration of ~9.7 × 10(17) cm(-3). All these have illustrated the promising potency of such NWs directly grown on amorphous substrates for various technological applications, as compared with the conventional MOCVD-grown GaSb NWs.

[1]  Ning Han,et al.  Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. , 2012, ACS nano.

[2]  E. Bakkers,et al.  From InSb nanowires to nanocubes: looking for the sweet spot. , 2012, Nano letters.

[3]  L. Wernersson,et al.  Carrier control and transport modulation in GaSb/InAsSb core/shell nanowires , 2012 .

[4]  Lars-Erik Wernersson,et al.  Synthesis and properties of antimonide nanowires , 2013, Nanotechnology.

[5]  M. Thewalt,et al.  P-type carbon doping of GaSb , 2001 .

[6]  Jared J. Hou,et al.  Manipulated Growth of GaAs Nanowires: Controllable Crystal Quality and Growth Orientations via a Supersaturation-Controlled Engineering Process , 2012 .

[7]  Chenglin Yan,et al.  Heteroepitaxial growth of GaSb nanotrees with an ultra-low reflectivity in a broad spectral range. , 2012, Nano letters.

[8]  T. Hsueh,et al.  A ZnO-nanowire phototransistor prepared on glass substrates. , 2011, ACS applied materials & interfaces.

[9]  Jared J. Hou,et al.  Tunable Electronic Transport Properties of Metal‐Cluster‐Decorated III–V Nanowire Transistors , 2013, Advanced materials.

[10]  Zhiyong Fan,et al.  Diameter-dependent electron mobility of InAs nanowires. , 2009, Nano letters.

[11]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[12]  Mats-Erik Pistol,et al.  InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. , 2010, Nano letters.

[13]  W. Hume-rothery,et al.  The equilibrium diagram of the system gold-gallium , 1966 .

[14]  L. Wernersson,et al.  GaSb nanowire single-hole transistor , 2011 .

[15]  H. Xu,et al.  Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning. , 2012, Nano letters.

[16]  Lars-Erik Wernersson,et al.  Single InAs/GaSb nanowire low-power CMOS inverter. , 2012, Nano letters.

[17]  K. L. Martinez,et al.  Ambipolar transistor behavior in p-doped InAs nanowires grown by molecular beam epitaxy , 2008 .

[18]  J. Appenzeller,et al.  Synthesis of antimony-based nanowires using the simple vapor deposition method. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  Shaoyun Huang,et al.  Synthesis, properties, and top-gated metal–oxide–semiconductor field-effect transistors of p-type GaSb nanowires , 2013 .

[20]  W. Prost,et al.  Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth , 2009 .

[21]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[22]  Lars Samuelson,et al.  Growth of one-dimensional nanostructures in MOVPE , 2004 .

[23]  L. Samuelson,et al.  Mass transport model for semiconductor nanowire growth. , 2005, The journal of physical chemistry. B.

[24]  Hyperfine interaction induced decoherence of electron spins in quantum dots , 2006, cond-mat/0609185.

[25]  A. Javey,et al.  Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn. , 2010, Nano letters.

[26]  J. Ho,et al.  Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. , 2013, Nanoscale.

[27]  L. Wernersson,et al.  InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch , 2009, Nanotechnology.

[28]  Chennupati Jagadish,et al.  Structural characteristics of GaSb∕GaAs nanowire heterostructures grown by metal-organic chemical vapor deposition , 2006 .

[29]  S. M. Durbin,et al.  Growth and Characterization of Unintentionally Doped GaSb Nanowires , 2010 .

[30]  C. Ning,et al.  Charge transport and trap characterization in individual GaSb nanowires , 2012 .

[31]  L. Wernersson,et al.  GaAs/GaSb nanowire heterostructures grown by MOVPE , 2008 .

[32]  M. Meyyappan,et al.  Synthesis of group III antimonide nanowires , 2007 .

[33]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[34]  K. Dick,et al.  Crystal structure control in Au-free self-seeded InSb wire growth , 2011, Nanotechnology.

[35]  Yeonwoong Jung,et al.  Epitaxial growth and ordering of GeTe nanowires on microcrystals determined by surface energy minimization. , 2009, Nano letters.

[36]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[37]  F. Dimroth,et al.  Growth of Sb-based materials by MOVPE , 2003 .

[38]  N. Mason,et al.  The growth of antimonides by MOVPE , 1997 .

[39]  L. Wernersson,et al.  Characterization of GaSb nanowires grown by MOVPE , 2008 .

[40]  L. Wernersson,et al.  Formation of the Axial Heterojunction in GaSb/InAs(Sb) Nanowires with High Crystal Quality , 2011 .

[41]  V. Ursaki,et al.  Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication , 2010 .

[42]  Ning Han,et al.  Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates , 2011, Nanotechnology.

[43]  B. Borg,et al.  Diameter limitation in growth of III-Sb-containing nanowire heterostructures. , 2013, ACS nano.

[44]  S. Kodambaka,et al.  Self-catalyzed growth of InP/InSb axial nanowire heterostructures , 2011 .

[45]  S. Bandyopadhyay,et al.  Capacitive infrared photodetector for room temperature operation , 2013 .