Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data

We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) well observed by the Swift X-Ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power-law segments: (1) an initial very steep decay (∝t-α with 3 ≲ α1 ≲ 5), followed by (2) a very shallow decay (0.5 ≲ α2 ≲ 1.0), and finally (3) a somewhat steeper decay (1 ≲ α3 ≲ 1.5). These power-law segments are separated by two corresponding break times, tbreak,1 ≲ 500 s and 103 s ≲ tbreak,2 ≲ 104 s. On top of this canonical behavior, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long-lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (tbreak,1) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (α2) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (tbreak,2). This energy injection increases the energy of the afterglow shock by at least a factor of f ≳ 4 and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

[1]  P. Giommi,et al.  GRB 050117: Simultaneous Gamma-Ray and X-Ray Observations with the Swift Satellite , 2005, astro-ph/0510008.

[2]  E. Ramirez-Ruiz Photospheric signatures imprinted on the γ‐ray burst spectra , 2005, astro-ph/0509232.

[3]  N. Gehrels,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[4]  P. B. Cameron,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[5]  T Sakamoto,et al.  An unexpectedly rapid decline in the X-ray afterglow emission of long γ-ray bursts , 2005, Nature.

[6]  N. Gehrels,et al.  Bright X-ray Flares in Gamma-Ray Burst Afterglows , 2005, Science.

[7]  William H. Lee,et al.  A Compact Binary Merger Model for the Short, Hard GRB 050509b , 2005, astro-ph/0506104.

[8]  T. Sakamoto,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[9]  E. Ramirez-Ruiz,et al.  Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b , 2005, astro-ph/0505480.

[10]  S. E. Persson,et al.  The Discovery of the Optical and Near-IR Afterglows of the First Swift Gamma-Ray Bursts , 2005, astro-ph/0502468.

[11]  M. Rees,et al.  Dissipative Photosphere Models of Gamma-Ray Bursts and X-Ray Flashes , 2004, astro-ph/0412702.

[12]  L. A. Antonelli,et al.  SN 2003lw and GRB 031203: A Bright Supernova for a Faint Gamma-Ray Burst , 2004, astro-ph/0405449.

[13]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[14]  Bing Zhang,et al.  On the Kinetic Energy and Radiative Efficiency of Gamma-Ray Bursts , 2004, astro-ph/0404107.

[15]  E. Ramirez-Ruiz Identifying young gamma-ray burst fossils , 2004, astro-ph/0403039.

[16]  P. Giommi,et al.  Chandra Observations of the X-Ray Environs of SN 1998bw/GRB 980425 , 2004, astro-ph/0401184.

[17]  Tsvi Piran,et al.  Astrophysics: refreshed shocks from a γ-ray burst , 2003, Nature.

[18]  Melvyn B. Davies,et al.  High-resolution calculations of merging neutron stars - III. Gamma-ray bursts , 2003, astro-ph/0306418.

[19]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[20]  T. Piran,et al.  The Variable Light Curve of GRB 030329: The Case for Refreshed Shocks , 2003, astro-ph/0304563.

[21]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[22]  D. Frail,et al.  Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003, astro-ph/0302210.

[23]  D. Frail,et al.  A Standard Kinetic Energy Reservoir in Gamma-Ray Burst Afterglows , 2003, astro-ph/0301268.

[24]  Tsvi Piran,et al.  Variability in GRB afterglows and GRB 021004 , 2002, astro-ph/0210631.

[25]  S. Covino,et al.  The afterglow of GRB 021004: surfing on density waves , 2002, astro-ph/0210333.

[26]  William H. Lee,et al.  Accretion Disks around Black Holes: Dynamical Evolution, Meridional Circulations, and Gamma-Ray Bursts , 2002, astro-ph/0206011.

[27]  M. Rees,et al.  Events in the life of a cocoon surrounding a light, collapsar jet , 2002, astro-ph/0205108.

[28]  E. Ramirez-Ruiz,et al.  Was GRB 990123 a unique optical flash , 2001, astro-ph/0110519.

[29]  A. Panaitescu,et al.  Properties of Relativistic Jets in Gamma-Ray Burst Afterglows , 2001, astro-ph/0109124.

[30]  A. Panaitescu,et al.  Fundamental Physical Parameters of Collimated Gamma-Ray Burst Afterglows , 2001, astro-ph/0108045.

[31]  R. Sari,et al.  The Shape of Spectral Breaks in Gamma-Ray Burst Afterglows , 2001, astro-ph/0108027.

[32]  Lynnette M. Dray,et al.  Winds from massive stars: implications for the afterglows of γ‐ray bursts , 2000, astro-ph/0012396.

[33]  A. Panaitescu,et al.  Jet Energy and Other Parameters for the Afterglows of GRB 980703, GRB 990123, GRB 990510, and GRB 991216 Determined from Modeling of Multifrequency Data , 2000, astro-ph/0010257.

[34]  A. Merloni,et al.  Quiescent times in gamma-ray bursts – II. Dormant periods in the central engine? , 2000, astro-ph/0010219.

[35]  S. E. Woosley,et al.  Supernovae, Jets, and Collapsars , 1999, astro-ph/9910034.

[36]  Re'em Sari,et al.  Lower Limits on Lorentz Factors in Gamma-Ray Bursts , 2000, astro-ph/0011508.

[37]  E. Waxman,et al.  Efficiency and Spectrum of Internal Gamma-Ray Burst Shocks , 2000, astro-ph/0011170.

[38]  Bing Zhang,et al.  GAMMA-RAY BURST AFTERGLOW WITH CONTINUOUS ENERGY INJECTION: SIGNATURE OF A HIGHLY MAGNETIZED MILLISECOND PULSAR , 2000 .

[39]  A. Panaitescu,et al.  Afterglow Emission from Naked Gamma-Ray Bursts , 2000, astro-ph/0006317.

[40]  E. Waxman,et al.  On the Energy of Gamma-Ray Bursts , 1999, astro-ph/9912214.

[41]  T. Piran,et al.  Energetics and Luminosity Function of Gamma-Ray Bursts , 1999, astro-ph/9909014.

[42]  Pawan Kumar Gamma-Ray Burst Energetics , 1999, astro-ph/9907096.

[43]  Tsvi Piran,et al.  Some Observational Consequences of Gamma-Ray Burst Shock Models , 1999, astro-ph/9906002.

[44]  J. Rhoads The Dynamics and Light Curves of Beamed Gamma-Ray Burst Afterglows , 1999, astro-ph/9903399.

[45]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[46]  T. Piran,et al.  GRB 990123: The Optical Flash and the Fireball Model , 1999, astro-ph/9902009.

[47]  E. Ramirez-Ruiz,et al.  GRB 990123: Evidence that the Gamma Rays Come from a Central Engine , 1999, astro-ph/9902007.

[48]  T. Piran Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[49]  ApJ, in press , 1999 .

[50]  Z. Dai,et al.  Gamma-ray bursts and afterglows from rotating strange starsand neutron stars , 1998, astro-ph/9810332.

[51]  E. Ramirez-Ruiz,et al.  Gamma-Ray Bursts and Relativistic Shells: The Surface Filling Factor , 1998, astro-ph/9802200.

[52]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[53]  T. Piran,et al.  Variability in Gamma-Ray Bursts: A Clue , 1997 .

[54]  T. Piran,et al.  Variability in GRBs - A Clue , 1997, astro-ph/9701002.

[55]  M. Rees,et al.  Unsteady outflow models for cosmological gamma-ray bursts , 1994, astro-ph/9404038.

[56]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[57]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[58]  V. Usov,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992 .

[59]  Bohdan Paczynski,et al.  Cosmological gamma-ray bursts , 1991 .

[60]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[61]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[62]  R. Blandford,et al.  Fluid dynamics of relativistic blast waves , 1976 .