Gradual distributed real-coded genetic algorithms

A major problem in the use of genetic algorithms is premature convergence. One approach for dealing with this problem is the distributed genetic algorithm model. Its basic idea is to keep, in parallel, several subpopulations that are processed by genetic algorithms, with each one being independent of the others. Making distinctions between the subpopulations by applying genetic algorithms with different configurations, we obtain the so-railed heterogeneous distributed genetic algorithms. These algorithms represent a promising way for introducing a correct exploration/exploitation balance in order to avoid premature convergence and reach approximate final solutions. This paper presents the gradual distributed real-coded genetic algorithms, a type of heterogeneous distributed real-coded genetic algorithms that apply a different crossover operator to each sub-population. Experimental results show that the proposals consistently outperform sequential real-coded genetic algorithms.

[1]  Dana S. Richards,et al.  Genetic Algorithms and Punctuated Equilibria in VLSI , 1990, PPSN.

[2]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[3]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[4]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[5]  R. Collins Studies in artificial evolution , 1992 .

[6]  Keith E. Mathias,et al.  Convergence Controlled Variation , 1996, FOGA.

[7]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[8]  Jochen HeistermannZFE Evolutionary Algorithms for the Optimization of Simulation Models Using Pvm , 1995 .

[9]  L. Darrell Whitley,et al.  Dataflow Parallelism in Genetic Algorithms , 1992, PPSN.

[10]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[11]  Shu-Yuen Hwang,et al.  A Genetic Algorithm with Disruptive Selection , 1993, ICGA.

[12]  L. Darrell Whitley,et al.  Test driving three 1995 genetic algorithms: New test functions and geometric matching , 1995, J. Heuristics.

[13]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[14]  Surya B. Yadav,et al.  The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial Selection , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[15]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[16]  W Bossert,et al.  Mathematical optimization: are there abstract limits on natural selection? , 1967, The Wistar Institute symposium monograph.

[17]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[18]  Marco Tomassini,et al.  Distributed Genetic Algorithms with an Application to Portfolio Selection Problems , 1995, ICANNGA.

[19]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[20]  Dana S. Richards,et al.  Punctuated Equilibria: A Parallel Genetic Algorithm , 1987, ICGA.

[21]  L. Darrell Whitley,et al.  Changing Representations During Search: A Comparative Study of Delta Coding , 1994, Evolutionary Computation.

[22]  Erick Cantú-Paz,et al.  A Summary of Research on Parallel Genetic Algorithms , 1995 .

[23]  Yuval Davidor,et al.  A Naturally Occurring Niche and Species Phenomenon: The Model and First Results , 1991, ICGA.

[24]  Reiko Tanese,et al.  Parallel Genetic Algorithms for a Hypercube , 1987, ICGA.

[25]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[26]  Vassilios Petridis,et al.  Co-operating Populations with Different Evolution Behaviours , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[27]  Amnon Barak,et al.  Profiling Communication in Distributed Genetic Algorithms , 1995, IJCAI.

[28]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[29]  Gerrit Kateman,et al.  Optimization of calibration data with the dynamic genetic algorithm , 1992 .

[30]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[31]  J Baker,et al.  REDUCING BIAS AND NEFFICIENCY IN THE SELECTION ALGORITHM, GENETIC ALGORITHMS AND APPLICATIONS , 2000 .

[32]  Joachim Stender,et al.  Parallel Genetic Algorithms: Introduction and Overview of Current Research , 1993 .

[33]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[34]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[35]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[36]  Erik D. Goodman,et al.  Coarse-grain parallel genetic algorithms: categorization and new approach , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[37]  Richard J. Enbody,et al.  Further Research on Feature Selection and Classification Using Genetic Algorithms , 1993, ICGA.

[38]  Shigeyoshi Tsutsui,et al.  Forking Genetic Algorithm with Blocking and Shrinking Modes (fGA) , 1993, ICGA.

[39]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[40]  Evan H. Magill,et al.  Distributed genetic algorithms for resource allocation , 1993 .

[41]  Francisco Herrera,et al.  Heuristic Crossovers for Real-Coded Genetic Algorithms Based on Fuzzy Connectives , 1996, PPSN.

[42]  Schloss Birlinghoven Evolution in Time and Space -the Parallel Genetic Algorithm , 1991 .

[43]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[44]  John H. Holland,et al.  Distributed genetic algorithms for function optimization , 1989 .

[45]  F. Herrera,et al.  Heterogeneous distributed genetic algorithms based on the crossover operator , 1997 .

[46]  L. Darrell Whitley,et al.  GENITOR II: a distributed genetic algorithm , 1990, J. Exp. Theor. Artif. Intell..

[47]  Heinz Mühlenbein,et al.  Strategy Adaption by Competing Subpopulations , 1994, PPSN.

[48]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[49]  Oliver Vornberger,et al.  An Adaptive Parallel Genetic Algorithm for VLSI-Layout Optimization , 1996, PPSN.

[50]  Francisco Herrera,et al.  Fuzzy connectives based crossover operators to model genetic algorithms population diversity , 1997, Fuzzy Sets Syst..

[51]  Francisco Herrera,et al.  Dynamic and heuristic fuzzy connectives-based crossover operators for controlling the diversity and convergence of real-coded genetic algorithms , 1996, Int. J. Intell. Syst..

[52]  Heinz Mühlenbein,et al.  Fuzzy Recombination for the Breeder Genetic Algorithm , 1995, ICGA.

[53]  Heinz Mühlenbein,et al.  Evolution in Time and Space - The Parallel Genetic Algorithm , 1990, FOGA.

[54]  M. Mizumoto Pictorial representations of fuzzy connectives, part I: cases of t-norms, t-conorms and averaging operators , 1989 .

[55]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[56]  Theodore C. Belding,et al.  The Distributed Genetic Algorithm Revisited , 1995, ICGA.

[57]  A. Griewank Generalized descent for global optimization , 1981 .

[58]  Heinz Mühlenbein,et al.  Parallel Genetic Algorithms, Population Genetics, and Combinatorial Optimization , 1989, Parallelism, Learning, Evolution.