Spectroscopic characterization of natural calcite minerals.

The FT-IR, FT-Raman, NMR spectral data of ten different limestone samples have been compared. FT-IR and FT-Raman spectral data show that calcium carbonate in limestone, principally in the form of calcite, as identified by its main absorption bands at 1426, 1092, 876 and 712 cm(-1). The sharp diffractions at the d-spacings, 3.0348, 1.9166 and 1.8796 confirm the presence of calcite structure and the calculated lattice parameters are: a=4.9781 A, c=17.1188 A. The range of 13C chemical shifts for different limestone samples is very small, varying from 198.38 to 198.42 ppm. The observed chemical shifts are consistent with the identical C-O bonding in different limestone samples. 27Al MAS NMR spectra of the samples exhibit a central line at 1 ppm and another line at 60 ppm corresponding to octahedral and tetrahedral Al ions, respectively. The five component resonances were observed in 29Si MAS NMR spectrum of limestone and these resonances were assigned to Si (4 Al), Si (3 Al), Si (2 Al), Si (1 Al) and Si (0 Al) from low field to high field.

[1]  J. S. Hartman,et al.  Occupancy of T sites in the scapolite series; a multinuclear NMR study using magic-angle spinning , 1987 .

[2]  R. Herman,et al.  Discrimination among Carbonate Minerals by Raman Spectroscopy Using the Laser Microprobe , 1987 .

[3]  Paul F. Kerr,et al.  Infrared spectra, symmentry and structure relations of some carbonate minerals , 1963 .

[4]  R. Kirkpatrick,et al.  Solid-State Nuclear Magnetic Resonance Spectroscopy of Minerals , 1985 .

[5]  É. Lippmaa,et al.  Investigation of the structure of zeolites by solid-state high-resolution silicon-29 NMR spectroscopy , 1981 .

[6]  G. Engelhardt,et al.  A semi-empirical quantum-chemical rationalization of the correlation between SiOSi angles and 29Si NMR chemical shifts of silica polymorphs and framework aluminosilicates (zeolites) , 1984 .

[7]  H. Rutt,et al.  Raman spectra of carbonates of calcite structure , 1974 .

[8]  E. R. Andrew,et al.  The narrowing of NMR spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin multiplet structures for solids . Pulsed NMR in Solids , 1971 .

[9]  J. Serratosa,et al.  Silicon-29 and aluminum-27 high-resolution MAS-NMR spectra of phyllosilicates , 1984 .

[10]  R. Frost,et al.  Solid state 29 Si NMR examination of the 2:1 ribbon magnesium silicates, sepiolite and palygorskite , 1985 .

[11]  L. Drain The Broadening of Magnetic Resonance Lines due to Field Inhomogeneities in Powdered Samples , 1962 .

[12]  M. A. Legodi,et al.  Quantitative Determination of CaCO3 in Cement Blends by FT-IR , 2001 .

[13]  B. Sherriff,et al.  LEAD EXCHANGE INTO ZEOLITE AND CLAY MINERALS : A 29SI, 27AL, 23NA SOLID-STATE NMR STUDY , 1993 .

[14]  J. Klinowski,et al.  Ordering of aluminium and silicon in synthetic faujasites , 1981, Nature.

[15]  B. Roy Spectroscopic Analysis of the Structure of Silicate Glasses along the Joint xMAlO2‐(1–x)SiO2(M = Li, Na, K, Rb, Cs) , 1987 .

[16]  R. Kirkpatrick,et al.  High-resolution 23Na, 27Al and 29Si NMR spectroscopy of framework Aluminosilicate glasses , 1987 .

[17]  R. Kirkpatrick,et al.  High-resolution 29 Si, 27 Al, and 23 Na NMR spectroscopic study of Al-Si disordering in annealed albite and oligoclase , 1986 .

[18]  J. Klinowski,et al.  Applications of magic-angle-spinning silicon-29 nuclear magnetic resonance. Evidence for two different kinds of silicon-aluminum ordering in zeolitic structures , 1981 .

[19]  J. Klinowski,et al.  Solid-state magic-angle spinning. Aluminum-27 nuclear magnetic resonance studies of zeolites using a 400-MHz high-resolution spectrometer , 1982 .

[20]  H. Darweesh Building materials from siliceous clay and low grade dolomite rocks , 2001 .

[21]  É. Lippmaa,et al.  Solid-state high-resolution silicon-29 chemical shifts in silicates , 1984 .

[22]  W. Geßner,et al.  Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27AI NMR , 1981 .

[23]  J. McCarthy,et al.  Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer , 1993 .

[24]  D. A. Slack,et al.  Investigation of the contributions to the silicon-29 MAS NMR line widths of zeolites and detection of crystallographically inequivalent sites by the study of highly siliceous zeolites , 1984 .

[25]  John S. Waugh,et al.  NMR in rotating solids , 1979 .

[26]  M. Czank,et al.  A 29Si MAS-NMR study of Cd7[Ge6Si]O21 pyroxmangite , 2000 .

[27]  E. Oldfield,et al.  High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals , 1985 .

[28]  W. Sterzel,et al.  Die wirkung schwerer kohlenstoffisotope auf das infrarotspektrum von carbonaten , 1968 .

[29]  E. Oldfield,et al.  High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates. , 1983 .

[30]  É. Lippmaa,et al.  Structural studies of silicates by solid-state high-resolution silicon-29 NMR , 1980 .

[31]  T. Pinnavaia,et al.  Silicon and aluminium site distributions in 2:1 layered silicate clays , 1984, Nature.

[32]  F. Matossi,et al.  Das ultrarote Absorptionsspektrum der Carbonate , 1926 .

[33]  F. Seifert,et al.  A multinuclear, high-resolution solid-state NMR study of sorensenite (Na4SnBe2(Si3O9)·2H2O) and comparison with wollastonite and pectolite , 1990 .

[34]  J. Herzfeld,et al.  Sideband intensities in NMR spectra of samples spinning at the magic angle , 1980 .

[35]  F. Andersen,et al.  Infrared spectra of amorphous and crystalline calcium carbonate , 1991 .

[36]  R. Kirkpatrick,et al.  13 C MAS NMR spectroscopy of inorganic and biogenic carbonates , 1989 .

[37]  R. Berner,et al.  Mechanism of CO (super 2-) 3 substitution in carbonate-fluorapatite; evidence from FTIR spectroscopy, 13 C NMR, and quantum mechanical calculations , 1994 .