Multisided generalisations of Gregory patches
暂无分享,去创建一个
[1] Suresh Lodha,et al. Filling N-sided Holes , 1993, Modeling in Computer Graphics.
[2] Tony DeRose,et al. Generalized B-spline surfaces of arbitrary topology , 1990, SIGGRAPH.
[3] Jörg Peters,et al. Improved shape for refinable surfaces with singularly parameterized irregularities , 2017, Comput. Aided Des..
[4] Hiroaki Chiyokura,et al. Design of solids with free-form surfaces , 1983, SIGGRAPH.
[5] Lucia Longhi. Interpolating Patches Between Cubic Boundaries , 1985 .
[6] A. A. Ball,et al. Control point surfaces over non-four-sided areas , 1997, Comput. Aided Geom. Des..
[7] Tamás Várady,et al. A Multi‐sided Bézier Patch with a Simple Control Structure , 2016, Comput. Graph. Forum.
[8] Gudrun Albrecht,et al. G1 rational blend interpolatory schemes: A comparative study , 2012, Graph. Model..
[9] H Chiyokura,et al. Localized surface interpolation method for irregular meshes , 1986 .
[10] John A. Gregory,et al. Smooth Parametric Surfaces and n-Sided Patches , 1990 .
[11] Carlo H. Séquin,et al. Local surface interpolation with Bézier patches: errata and improvements , 1991, Comput. Aided Geom. Des..
[12] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[13] Gerald E. Farin,et al. A construction for visualC1 continuity of polynomial surface patches , 1982, Comput. Graph. Image Process..
[14] J. A. Gregory. Smooth interpolation without twist constraints , 1974 .
[15] Carlo H. Séquin,et al. Local surface interpolation with Bézier patches , 1987, Comput. Aided Geom. Des..
[16] Charlie C. L. Wang,et al. Localized construction of curved surfaces from polygon meshes: A simple and practical approach on GPU , 2011, Comput. Aided Des..
[17] E. Wachspress,et al. A Rational Finite Element Basis , 1975 .
[18] Tamás Várady,et al. Enhancement of a multi-sided Bézier surface representation , 2017, Comput. Aided Geom. Des..
[19] Tamás Várady,et al. Transfinite surface interpolation over irregular n-sided domains , 2011, Comput. Aided Des..
[20] Glen Mullineux,et al. The Zheng-Ball construction without twist constraints , 1999, Comput. Aided Geom. Des..
[21] Pierre Malraison. N-SIDED Surfaces: a Survey , 2000 .
[22] Gerald E. Farin,et al. A construction for visual C1 continuity of polynomial surface patches , 1982, Comput. Graph. Image Process..
[23] Michael S. Floater,et al. Generalized barycentric coordinates and applications * , 2015, Acta Numerica.
[24] J. J. Zheng. The n-sided control point surfaces without twist constraints , 2001, Comput. Aided Geom. Des..
[25] Tamás Várady,et al. G2 Surface Interpolation Over General Topology Curve Networks , 2014, Comput. Graph. Forum.
[26] Jirí Kosinka,et al. A Comparison of GPU Tessellation Strategies for Multisided Patches , 2018, Eurographics.
[27] Tamás Várady,et al. Multi-sided Surfaces with Fullness Control , 2016 .
[28] Tony DeRose,et al. A multisided generalization of Bézier surfaces , 1989, TOGS.
[29] Hans-Peter Seidel,et al. Mean Value Bézier Maps , 2008, GMP.
[30] Gerald E. Farin,et al. PNG1 triangles for tangent plane continuous surfaces on the GPU , 2008, Graphics Interface.
[31] Jörg Peters,et al. Curved PN triangles , 2001, I3D '01.
[32] Jirí Kosinka,et al. Phong Tessellation and PN Polygons for Polygonal Models , 2017, Eurographics.
[33] Marc Alexa,et al. Phong Tessellation , 2008, SIGGRAPH 2008.
[34] Bert Jüttler,et al. Computation of rotation minimizing frames , 2008, TOGS.
[35] Matthias Nießner,et al. State of the Art Report on Real-time Rendering with Hardware Tessellation , 2014, Eurographics.