Multisided generalisations of Gregory patches

Abstract We propose two generalisations of Gregory patches to faces of any valency by using generalised barycentric coordinates in combination with two kinds of multisided Bezier patches. Our first construction builds on S-patches to generalise triangular Gregory patches. The local construction of Chiyokura and Kimura providing G 1 continuity between adjoining Bezier patches is generalised so that the novel Gregory S-patches of any valency can be smoothly joined to one another. Our second construction makes a minor adjustment to the generalised Bezier patch structure to allow for cross-boundary derivatives to be defined independently per side. We show that the corresponding blending functions have the inherent ability to blend ribbon data much like the rational blending functions of Gregory patches. Both constructions take as input a polygonal mesh with vertex normals and provide G 1 surfaces interpolating the input vertices and normals. Due to the full locality of the methods, they are well suited for geometric modelling as well as computer graphics applications relying on hardware tessellation.

[1]  Suresh Lodha,et al.  Filling N-sided Holes , 1993, Modeling in Computer Graphics.

[2]  Tony DeRose,et al.  Generalized B-spline surfaces of arbitrary topology , 1990, SIGGRAPH.

[3]  Jörg Peters,et al.  Improved shape for refinable surfaces with singularly parameterized irregularities , 2017, Comput. Aided Des..

[4]  Hiroaki Chiyokura,et al.  Design of solids with free-form surfaces , 1983, SIGGRAPH.

[5]  Lucia Longhi Interpolating Patches Between Cubic Boundaries , 1985 .

[6]  A. A. Ball,et al.  Control point surfaces over non-four-sided areas , 1997, Comput. Aided Geom. Des..

[7]  Tamás Várady,et al.  A Multi‐sided Bézier Patch with a Simple Control Structure , 2016, Comput. Graph. Forum.

[8]  Gudrun Albrecht,et al.  G1 rational blend interpolatory schemes: A comparative study , 2012, Graph. Model..

[9]  H Chiyokura,et al.  Localized surface interpolation method for irregular meshes , 1986 .

[10]  John A. Gregory,et al.  Smooth Parametric Surfaces and n-Sided Patches , 1990 .

[11]  Carlo H. Séquin,et al.  Local surface interpolation with Bézier patches: errata and improvements , 1991, Comput. Aided Geom. Des..

[12]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[13]  Gerald E. Farin,et al.  A construction for visualC1 continuity of polynomial surface patches , 1982, Comput. Graph. Image Process..

[14]  J. A. Gregory Smooth interpolation without twist constraints , 1974 .

[15]  Carlo H. Séquin,et al.  Local surface interpolation with Bézier patches , 1987, Comput. Aided Geom. Des..

[16]  Charlie C. L. Wang,et al.  Localized construction of curved surfaces from polygon meshes: A simple and practical approach on GPU , 2011, Comput. Aided Des..

[17]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[18]  Tamás Várady,et al.  Enhancement of a multi-sided Bézier surface representation , 2017, Comput. Aided Geom. Des..

[19]  Tamás Várady,et al.  Transfinite surface interpolation over irregular n-sided domains , 2011, Comput. Aided Des..

[20]  Glen Mullineux,et al.  The Zheng-Ball construction without twist constraints , 1999, Comput. Aided Geom. Des..

[21]  Pierre Malraison N-SIDED Surfaces: a Survey , 2000 .

[22]  Gerald E. Farin,et al.  A construction for visual C1 continuity of polynomial surface patches , 1982, Comput. Graph. Image Process..

[23]  Michael S. Floater,et al.  Generalized barycentric coordinates and applications * , 2015, Acta Numerica.

[24]  J. J. Zheng The n-sided control point surfaces without twist constraints , 2001, Comput. Aided Geom. Des..

[25]  Tamás Várady,et al.  G2 Surface Interpolation Over General Topology Curve Networks , 2014, Comput. Graph. Forum.

[26]  Jirí Kosinka,et al.  A Comparison of GPU Tessellation Strategies for Multisided Patches , 2018, Eurographics.

[27]  Tamás Várady,et al.  Multi-sided Surfaces with Fullness Control , 2016 .

[28]  Tony DeRose,et al.  A multisided generalization of Bézier surfaces , 1989, TOGS.

[29]  Hans-Peter Seidel,et al.  Mean Value Bézier Maps , 2008, GMP.

[30]  Gerald E. Farin,et al.  PNG1 triangles for tangent plane continuous surfaces on the GPU , 2008, Graphics Interface.

[31]  Jörg Peters,et al.  Curved PN triangles , 2001, I3D '01.

[32]  Jirí Kosinka,et al.  Phong Tessellation and PN Polygons for Polygonal Models , 2017, Eurographics.

[33]  Marc Alexa,et al.  Phong Tessellation , 2008, SIGGRAPH 2008.

[34]  Bert Jüttler,et al.  Computation of rotation minimizing frames , 2008, TOGS.

[35]  Matthias Nießner,et al.  State of the Art Report on Real-time Rendering with Hardware Tessellation , 2014, Eurographics.