Moduli spaces of residueless meromorphic differentials and the KP hierarchy

We prove that the cohomology classes of the moduli spaces of residueless meromorphic differentials, i.e., the closures, in the moduli space of stable curves, of the loci of smooth curves whose marked points are the zeros and poles of prescribed orders of a meromorphic differential with vanishing residues, form a partial cohomological field theory (CohFT) of infinite rank. To this partial CohFT we apply the double ramification hierarchy construction to produce a Hamiltonian system of evolutionary PDEs. We prove that its reduction to the case of differentials with exactly two zeros and any number of poles coincides with the KP hierarchy up to a change of variables.

[1]  A. Sauvaget,et al.  Cohomology classes of strata of differentials , 2017, Geometry & Topology.

[2]  S. Grushevsky,et al.  Compactification of strata of Abelian differentials , 2016, Duke Mathematical Journal.

[3]  R. Pandharipande,et al.  Pixton’s formula and Abel–Jacobi theory on the Picard stack , 2020, Acta Mathematica.

[4]  P. Rossi Integrability, Quantization and Moduli Spaces of Curves , 2017, 1703.00232.

[5]  D. Zvonkine,et al.  Integrals of psi-classes over double ramification cycles , 2012, 1211.5273.

[6]  Paolo Rossi,et al.  Extended r-spin theory in all genera and the discrete KdV hierarchy , 2018, Advances in Mathematics.

[7]  A. Buryak,et al.  Double Ramification Cycles and Integrable Hierarchies , 2014, 1403.1719.

[8]  R. Pandharipande,et al.  Double ramification cycles on the moduli spaces of curves , 2016, 1602.04705.

[9]  R. Hain Normal Functions and the Geometry of Moduli Spaces of Curves , 2011, 1102.4031.

[10]  Paolo Rossi,et al.  A GENERALISATION OF WITTEN’S CONJECTURE FOR THE PIXTON CLASS AND THE NONCOMMUTATIVE KDV HIERARCHY , 2021, Journal of the Institute of Mathematics of Jussieu.

[11]  A. Buryak,et al.  Recursion Relations for Double Ramification Hierarchies , 2014, 1411.6797.

[12]  B. Dubrovin,et al.  Tau-Structure for the Double Ramification Hierarchies , 2016, Communications in Mathematical Physics.

[13]  R. Pandharipande,et al.  Logarithmic series and Hodge integrals in the tautological ring. With an appendix by Don Zagier. , 2000, math/0002112.

[14]  R. Pandharipande,et al.  Tautological relations via 𝑟-spin structures , 2016, Journal of Algebraic Geometry.

[15]  R. Pandharipande,et al.  THE MODULI SPACE OF TWISTED CANONICAL DIVISORS , 2015, Journal of the Institute of Mathematics of Jussieu.

[16]  A. Arsie,et al.  Flat F-Manifolds, F-CohFTs, and Integrable Hierarchies , 2020, Communications in Mathematical Physics.

[17]  B. Dubrovin,et al.  Integrable Systems of Double Ramification Type , 2016, International Mathematics Research Notices.

[18]  M. Kontsevich,et al.  Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994 .

[19]  Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov - Witten invariants , 2001, math/0108160.

[20]  Y. Ruan,et al.  BCFG Drinfeld–Sokolov hierarchies and FJRW-theory , 2013, 1312.7227.

[21]  L. Dickey Soliton Equations and Hamiltonian Systems , 2003 .

[22]  Martin Möller,et al.  The Chern classes and Euler characteristic of the moduli spaces of Abelian differentials , 2020, Forum of Mathematics, Pi.