Uranus Orbiter and Probe: A Radio Science Investigation to Determine the Planet’s Gravity Field, Depth of the Winds, and Tidal Deformations

The most recent Planetary Science and Astrobiology Decadal Survey has proposed Uranus as the target for NASA’s next large-scale mission. The interior structure and atmosphere of the planet are currently poorly understood, and objectives for investigating Uranus’s deeper regions and composition are highly ranked. Traditionally, gravity science has served as one of the primary means for probing the depths of planetary bodies and inferring their internal density distributions. In this work, we present precise numerical simulations of an onboard radio science experiment designed to determine Uranus’s gravity field and tidal deformations, which would offer a rare view into the planet’s interior. We focus on the mission’s orbital planning, discussing crucial parameters such as the number of pericenter passes, orbital inclination, and periapsis altitude necessary to meet the gravity measurement requirements for a Uranus orbiter. Our findings suggest that eight close encounters may be sufficient to determine the zonal gravity field up to J 8 with a relative accuracy of 10%, if the trajectory is optimized. This would allow for the decoupling of the gravity field components due to interior structure and zonal winds. Additionally, we find that the expected end-of-mission uncertainty on Uranus’s Love number k 22 is of order ∼0.01 (3σ). This level of accuracy may offer crucial information about Uranus’s inner state and allow for discriminating between a liquid and solid core, thus shedding light on crucial aspects of the planet’s formation and evolution.

[1]  Breanna J. Johnson,et al.  Uranus Flagship-class Orbiter and Probe Using Aerocapture , 2024, AIAA SCITECH 2024 Forum.

[2]  P. Longaretti,et al.  The Uranus system from occultation observations (1977–2006): Rings, pole direction, gravity field, and masses of Cressida, Cordelia, and Ophelia , 2024, Icarus.

[3]  L. Iess,et al.  Observational evidence for cylindrically oriented zonal flows on Jupiter , 2023, Nature Astronomy.

[4]  M. Parisi,et al.  Forcing of slow density waves in the C ring by Saturn's quasi-toroidal normal modes , 2023, Icarus.

[5]  R. Helled,et al.  Zonal Winds of Uranus and Neptune: Gravitational Harmonics, Dynamic Self-gravity, Shape, and Rotation , 2022, The Astronomical Journal.

[6]  T. Guillot,et al.  Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter , 2022, Nature Communications.

[7]  R. Helled,et al.  Empirical structure models of Uranus and Neptune , 2022, Monthly Notices of the Royal Astronomical Society.

[8]  T. Guillot,et al.  The depth of Jupiter’s Great Red Spot constrained by Juno gravity overflights , 2021, Science.

[9]  Case Western Reserve University,et al.  Mercury Lander: Planetary Mission Concept Study for the 2023-2032 Decadal Survey , 2021, 2107.06795.

[10]  J. Fuller,et al.  A diffuse core in Saturn revealed by ring seismology , 2021, Nature Astronomy.

[11]  W. Folkner,et al.  The JPL Planetary and Lunar Ephemerides DE440 and DE441 , 2021 .

[12]  F. Soubiran,et al.  Constraining the depth of the winds on Uranus and Neptune via Ohmic dissipation , 2020, Monthly Notices of the Royal Astronomical Society.

[13]  A. Friedson Ice giant seismology: prospecting for normal modes , 2020, Philosophical Transactions of the Royal Society A.

[14]  A. Milillo,et al.  Ganymede's gravity, tides and rotational state from JUICE's 3GM experiment simulation , 2020 .

[15]  Nitin Arora,et al.  Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey , 2019, Planetary and Space Science.

[16]  L. Iess,et al.  On the determination of Jupiter's satellite-dependent Love numbers from Juno gravity data , 2019, Planetary and Space Science.

[17]  T. Guillot,et al.  Uranus and Neptune: Origin, Evolution and Internal Structure , 2019, Space Science Reviews.

[18]  B. Militzer,et al.  Measurement and implications of Saturn’s gravity field and ring mass , 2019, Science.

[19]  M. Marley,et al.  Cassini Ring Seismology as a Probe of Saturn’s Interior. I. Rigid Rotation , 2018, The Astrophysical Journal.

[20]  T. Guillot,et al.  Measurement of Jupiter’s asymmetric gravity field , 2018, Nature.

[21]  T. Guillot,et al.  A suppression of differential rotation in Jupiter’s deep interior , 2018, Nature.

[22]  T. Guillot,et al.  Jupiter’s atmospheric jet streams extend thousands of kilometres deep , 2018, Nature.

[23]  A. Conrad,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015 , 2018 .

[24]  Michelle M. Guevara,et al.  MONTE: the next generation of mission design and navigation software , 2018, CEAS Space Journal.

[25]  W. Folkner,et al.  The Juno Gravity Science Instrument , 2017 .

[26]  M. R. Haas,et al.  Time-series Analysis of Broadband Photometry of Neptune from K2 , 2017, 1702.02943.

[27]  W. Folkner,et al.  Jupiter spin-pole precession rate and moment of inertia from Juno radio-science observations , 2016 .

[28]  J. Fortney,et al.  Uranus evolution models with simple thermal boundary layers , 2016, 1605.00171.

[29]  L. Iess,et al.  Probing the depth of Jupiter's Great Red Spot with the Juno gravity experiment , 2016 .

[30]  H. Hammel,et al.  High S/N Keck and Gemini AO imaging of Uranus during 2012-2014: New cloud patterns, increasing activity, and improved wind measurements , 2015, 1512.05009.

[31]  R. A. Jacobson,et al.  THE ORBITS OF THE URANIAN SATELLITES AND RINGS, THE GRAVITY FIELD OF THE URANIAN SYSTEM, AND THE ORIENTATION OF THE POLE OF URANUS , 2014 .

[32]  J. Fuller Saturn ring seismology: Evidence for stable stratification in the deep interior of Saturn , 2014, 1406.3343.

[33]  William B. Hubbard,et al.  Atmospheric confinement of jet streams on Uranus and Neptune , 2013, Nature.

[34]  P. Tortora,et al.  Experimental validation of a dual uplink multifrequency dispersive noise calibration scheme for Deep Space tracking , 2013 .

[35]  Patrick Gaulme,et al.  Detection of Jovian seismic waves: a new probe of its interior structure , 2011, 1106.3714.

[36]  L. Simone,et al.  The X/X/KA-band deep space transponder for the BepiColombo mission to mercury , 2011 .

[37]  J. Anderson,et al.  Uranus and Neptune: Shape and rotation , 2010, 1006.3840.

[38]  E. Chiang,et al.  Three-dimensional Dynamics of Narrow Planetary Rings , 2003, astro-ph/0309248.

[39]  Giacomo Giampieri,et al.  Doppler Measurements of the Quadrupole Moments of Titan , 1997 .

[40]  A. Coustenis,et al.  The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data , 1990 .

[41]  L. Esposito,et al.  Creation of the Uranus rings and dust bands , 1989, Nature.

[42]  J. Connerney,et al.  The rotation period of Uranus , 1986, Nature.

[43]  G. Alderman National , 1896, The Journal of comparative medicine and veterinary archives.

[44]  Ezra M. Long,et al.  Embedding a Water Vapor Radiometer Within a Deep Space Network Ka-band Receiver , 2021 .

[45]  S. Ferrara Natur , 2021, Die große Erfindung.

[46]  H. Hammel,et al.  Evolution of the dusty rings of Uranus , 2006 .