Uranus Orbiter and Probe: A Radio Science Investigation to Determine the Planet’s Gravity Field, Depth of the Winds, and Tidal Deformations
暂无分享,去创建一个
M. Hofstadter | M. Parisi | A. Friedson | A. Akins | C. R. Mankovich | Reza Karimi | Damon F. Landau
[1] Breanna J. Johnson,et al. Uranus Flagship-class Orbiter and Probe Using Aerocapture , 2024, AIAA SCITECH 2024 Forum.
[2] P. Longaretti,et al. The Uranus system from occultation observations (1977–2006): Rings, pole direction, gravity field, and masses of Cressida, Cordelia, and Ophelia , 2024, Icarus.
[3] L. Iess,et al. Observational evidence for cylindrically oriented zonal flows on Jupiter , 2023, Nature Astronomy.
[4] M. Parisi,et al. Forcing of slow density waves in the C ring by Saturn's quasi-toroidal normal modes , 2023, Icarus.
[5] R. Helled,et al. Zonal Winds of Uranus and Neptune: Gravitational Harmonics, Dynamic Self-gravity, Shape, and Rotation , 2022, The Astronomical Journal.
[6] T. Guillot,et al. Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter , 2022, Nature Communications.
[7] R. Helled,et al. Empirical structure models of Uranus and Neptune , 2022, Monthly Notices of the Royal Astronomical Society.
[8] T. Guillot,et al. The depth of Jupiter’s Great Red Spot constrained by Juno gravity overflights , 2021, Science.
[9] Case Western Reserve University,et al. Mercury Lander: Planetary Mission Concept Study for the 2023-2032 Decadal Survey , 2021, 2107.06795.
[10] J. Fuller,et al. A diffuse core in Saturn revealed by ring seismology , 2021, Nature Astronomy.
[11] W. Folkner,et al. The JPL Planetary and Lunar Ephemerides DE440 and DE441 , 2021 .
[12] F. Soubiran,et al. Constraining the depth of the winds on Uranus and Neptune via Ohmic dissipation , 2020, Monthly Notices of the Royal Astronomical Society.
[13] A. Friedson. Ice giant seismology: prospecting for normal modes , 2020, Philosophical Transactions of the Royal Society A.
[14] A. Milillo,et al. Ganymede's gravity, tides and rotational state from JUICE's 3GM experiment simulation , 2020 .
[15] Nitin Arora,et al. Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey , 2019, Planetary and Space Science.
[16] L. Iess,et al. On the determination of Jupiter's satellite-dependent Love numbers from Juno gravity data , 2019, Planetary and Space Science.
[17] T. Guillot,et al. Uranus and Neptune: Origin, Evolution and Internal Structure , 2019, Space Science Reviews.
[18] B. Militzer,et al. Measurement and implications of Saturn’s gravity field and ring mass , 2019, Science.
[19] M. Marley,et al. Cassini Ring Seismology as a Probe of Saturn’s Interior. I. Rigid Rotation , 2018, The Astrophysical Journal.
[20] T. Guillot,et al. Measurement of Jupiter’s asymmetric gravity field , 2018, Nature.
[21] T. Guillot,et al. A suppression of differential rotation in Jupiter’s deep interior , 2018, Nature.
[22] T. Guillot,et al. Jupiter’s atmospheric jet streams extend thousands of kilometres deep , 2018, Nature.
[23] A. Conrad,et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015 , 2018 .
[24] Michelle M. Guevara,et al. MONTE: the next generation of mission design and navigation software , 2018, CEAS Space Journal.
[25] W. Folkner,et al. The Juno Gravity Science Instrument , 2017 .
[26] M. R. Haas,et al. Time-series Analysis of Broadband Photometry of Neptune from K2 , 2017, 1702.02943.
[27] W. Folkner,et al. Jupiter spin-pole precession rate and moment of inertia from Juno radio-science observations , 2016 .
[28] J. Fortney,et al. Uranus evolution models with simple thermal boundary layers , 2016, 1605.00171.
[29] L. Iess,et al. Probing the depth of Jupiter's Great Red Spot with the Juno gravity experiment , 2016 .
[30] H. Hammel,et al. High S/N Keck and Gemini AO imaging of Uranus during 2012-2014: New cloud patterns, increasing activity, and improved wind measurements , 2015, 1512.05009.
[31] R. A. Jacobson,et al. THE ORBITS OF THE URANIAN SATELLITES AND RINGS, THE GRAVITY FIELD OF THE URANIAN SYSTEM, AND THE ORIENTATION OF THE POLE OF URANUS , 2014 .
[32] J. Fuller. Saturn ring seismology: Evidence for stable stratification in the deep interior of Saturn , 2014, 1406.3343.
[33] William B. Hubbard,et al. Atmospheric confinement of jet streams on Uranus and Neptune , 2013, Nature.
[34] P. Tortora,et al. Experimental validation of a dual uplink multifrequency dispersive noise calibration scheme for Deep Space tracking , 2013 .
[35] Patrick Gaulme,et al. Detection of Jovian seismic waves: a new probe of its interior structure , 2011, 1106.3714.
[36] L. Simone,et al. The X/X/KA-band deep space transponder for the BepiColombo mission to mercury , 2011 .
[37] J. Anderson,et al. Uranus and Neptune: Shape and rotation , 2010, 1006.3840.
[38] E. Chiang,et al. Three-dimensional Dynamics of Narrow Planetary Rings , 2003, astro-ph/0309248.
[39] Giacomo Giampieri,et al. Doppler Measurements of the Quadrupole Moments of Titan , 1997 .
[40] A. Coustenis,et al. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data , 1990 .
[41] L. Esposito,et al. Creation of the Uranus rings and dust bands , 1989, Nature.
[42] J. Connerney,et al. The rotation period of Uranus , 1986, Nature.
[43] G. Alderman. National , 1896, The Journal of comparative medicine and veterinary archives.
[44] Ezra M. Long,et al. Embedding a Water Vapor Radiometer Within a Deep Space Network Ka-band Receiver , 2021 .
[45] S. Ferrara. Natur , 2021, Die große Erfindung.
[46] H. Hammel,et al. Evolution of the dusty rings of Uranus , 2006 .