Effective partitioning method for computing weighted Moore-Penrose inverse

We introduce a method and an algorithm for computing the weighted Moore-Penrose inverse of multiple-variable polynomial matrix and the related algorithm which is appropriated for sparse polynomial matrices. These methods and algorithms are generalizations of algorithms developed in [M.B. Tasic, P.S. Stanimirovic, M.D. Petkovic, Symbolic computation of weighted Moore-Penrose inverse using partitioning method, Appl. Math. Comput. 189 (2007) 615-640] to multiple-variable rational and polynomial matrices and improvements of these algorithms on sparse matrices. Also, these methods are generalizations of the partitioning method for computing the Moore-Penrose inverse of rational and polynomial matrices introduced in [P.S. Stanimirovic, M.B. Tasic, Partitioning method for rational and polynomial matrices, Appl. Math. Comput. 155 (2004) 137-163; M.D. Petkovic, P.S. Stanimirovic, Symbolic computation of the Moore-Penrose inverse using partitioning method, Internat. J. Comput. Math. 82 (2005) 355-367] to the case of weighted Moore-Penrose inverse. Algorithms are implemented in the symbolic computational package MATHEMATICA.

[1]  N. Karampetakis,et al.  DFT calculation of the generalized and Drazin inverse of a polynomial matrix , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[2]  T. Greville,et al.  Some Applications of the Pseudoinverse of a Matrix , 1960 .

[3]  Robert E. Kalaba,et al.  Dynamic programming and pseudo-inverses , 2003, Appl. Math. Comput..

[4]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[5]  Milan B. Tasic,et al.  Drazin inverse of one-variable polynomial matrices , 2001 .

[6]  Nicholas P. Karampetakis,et al.  The Computation and Application of the Generalized Inverse via Maple , 1998, J. Symb. Comput..

[7]  S. Barnett,et al.  Leverrier's algorithm: a new proof and extensions , 1989 .

[8]  Predrag S. Stanimirovic,et al.  SYMBOLIC IMPLEMENTATION OF LEVERRIER-FADDEEV ALGORITHM AND APPLICATIONS , .

[9]  P. Tzekis,et al.  ON THE COMPUTATION OF THE GENERALIZED INVERSE OF A POLYNOMIAL MATRIX , 1999 .

[10]  Stephen Wolfram,et al.  The Mathematica book (4th edition) , 1999 .

[11]  Predrag S. Stanimirovic,et al.  A finite algorithm for generalized inverses of polynomial and rational matrices , 2003, Appl. Math. Comput..

[12]  Nicholas P. Karampetakis,et al.  Computation of the Generalized Inverse of a Polynomial Matrix and Applications , 1997 .

[13]  Nicholas P. Karampetakis,et al.  On the Computation of the Drazin Inverse of a Polynomial Matrix , 2001 .

[14]  Predrag S. Stanimirovic,et al.  Symbolic computation of the Moore–Penrose inverse using a partitioning method , 2005, Int. J. Comput. Math..

[15]  Nicholas P. Karampetakis,et al.  Generalized inverses of two-variable polynomial matrices and applications , 1997 .

[16]  Jun Ji A finite algorithm for the Drazin inverse of a polynomial matrix , 2002, Appl. Math. Comput..

[17]  Predrag S. Stanimirovic,et al.  Partitioning method for rational and polynomial matrices , 2004, Appl. Math. Comput..

[18]  Nicholas P. Karampetakis,et al.  Inverses of Multivariable Polynomial Matrices by Discrete Fourier Transforms , 2003, 2003 European Control Conference (ECC).

[19]  Milan B. Tasic,et al.  Symbolic computation of weighted Moore-Penrose inverse using partitioning method , 2007, Appl. Math. Comput..

[20]  Yimin Wei,et al.  The algorithm for computing the Drazin inverses of two-variable polynomial matrices , 2004, Appl. Math. Comput..

[21]  Basil G. Mertzios,et al.  Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion , 1991 .

[22]  Milan B. Tasic,et al.  Computing generalized inverses of a rational matrix and applications , 2007 .

[23]  Firdaus E. Udwadia,et al.  An Alternative Proof of the Greville Formula , 1997 .

[24]  Guo-rong Wang,et al.  A recursive algorithm for computing the weighted Moore-Penrose inverse A+-MN- , 1986 .

[25]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[26]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[27]  Masaaki Sibuya,et al.  Numerical algorithms for the Moore-Penrose inverse of a matrix: Direct methods , 1972 .

[28]  Predrag S. Stanimirovic,et al.  Computing generalized inverse of polynomial matrices by interpolation , 2006, Appl. Math. Comput..