Effective partitioning method for computing weighted Moore-Penrose inverse
暂无分享,去创建一个
Milan B. Tasic | Milan B. Tasić | Predrag S. Stanimirović | Marko D. Petković | P. Stanimirović | M. Petković
[1] N. Karampetakis,et al. DFT calculation of the generalized and Drazin inverse of a polynomial matrix , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.
[2] T. Greville,et al. Some Applications of the Pseudoinverse of a Matrix , 1960 .
[3] Robert E. Kalaba,et al. Dynamic programming and pseudo-inverses , 2003, Appl. Math. Comput..
[4] C. D. Meyer,et al. Generalized inverses of linear transformations , 1979 .
[5] Milan B. Tasic,et al. Drazin inverse of one-variable polynomial matrices , 2001 .
[6] Nicholas P. Karampetakis,et al. The Computation and Application of the Generalized Inverse via Maple , 1998, J. Symb. Comput..
[7] S. Barnett,et al. Leverrier's algorithm: a new proof and extensions , 1989 .
[8] Predrag S. Stanimirovic,et al. SYMBOLIC IMPLEMENTATION OF LEVERRIER-FADDEEV ALGORITHM AND APPLICATIONS , .
[9] P. Tzekis,et al. ON THE COMPUTATION OF THE GENERALIZED INVERSE OF A POLYNOMIAL MATRIX , 1999 .
[10] Stephen Wolfram,et al. The Mathematica book (4th edition) , 1999 .
[11] Predrag S. Stanimirovic,et al. A finite algorithm for generalized inverses of polynomial and rational matrices , 2003, Appl. Math. Comput..
[12] Nicholas P. Karampetakis,et al. Computation of the Generalized Inverse of a Polynomial Matrix and Applications , 1997 .
[13] Nicholas P. Karampetakis,et al. On the Computation of the Drazin Inverse of a Polynomial Matrix , 2001 .
[14] Predrag S. Stanimirovic,et al. Symbolic computation of the Moore–Penrose inverse using a partitioning method , 2005, Int. J. Comput. Math..
[15] Nicholas P. Karampetakis,et al. Generalized inverses of two-variable polynomial matrices and applications , 1997 .
[16] Jun Ji. A finite algorithm for the Drazin inverse of a polynomial matrix , 2002, Appl. Math. Comput..
[17] Predrag S. Stanimirovic,et al. Partitioning method for rational and polynomial matrices , 2004, Appl. Math. Comput..
[18] Nicholas P. Karampetakis,et al. Inverses of Multivariable Polynomial Matrices by Discrete Fourier Transforms , 2003, 2003 European Control Conference (ECC).
[19] Milan B. Tasic,et al. Symbolic computation of weighted Moore-Penrose inverse using partitioning method , 2007, Appl. Math. Comput..
[20] Yimin Wei,et al. The algorithm for computing the Drazin inverses of two-variable polynomial matrices , 2004, Appl. Math. Comput..
[21] Basil G. Mertzios,et al. Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion , 1991 .
[22] Milan B. Tasic,et al. Computing generalized inverses of a rational matrix and applications , 2007 .
[23] Firdaus E. Udwadia,et al. An Alternative Proof of the Greville Formula , 1997 .
[24] Guo-rong Wang,et al. A recursive algorithm for computing the weighted Moore-Penrose inverse A+-MN- , 1986 .
[25] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[26] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[27] Masaaki Sibuya,et al. Numerical algorithms for the Moore-Penrose inverse of a matrix: Direct methods , 1972 .
[28] Predrag S. Stanimirovic,et al. Computing generalized inverse of polynomial matrices by interpolation , 2006, Appl. Math. Comput..