Facilitation, augmentation and potentiation at central synapses

[1]  D. Dunlap,et al.  Synaptic Vesicle Traffic , 2001 .

[2]  Alex M. Thomson,et al.  Molecular frequency filters at central synapses , 2000, Progress in Neurobiology.

[3]  R. Burgoyne,et al.  Protein phosphorylation and the regulation of synaptic membrane traffic , 1999, Trends in Neurosciences.

[4]  A. Thomson,et al.  Release‐independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex , 1999, The Journal of physiology.

[5]  R. Jahn,et al.  The Synaptophysin–Synaptobrevin Complex: a Hallmark of Synaptic Vesicle Maturation , 1999, The Journal of Neuroscience.

[6]  C. Lévêque,et al.  Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  H. Kasai,et al.  Multiple kinetic components and the Ca2+ requirements of exocytosis. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  L. Brodin,et al.  Presynaptic mitochondria and the temporal pattern of neurotransmitter release. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  J. Chatton,et al.  Roles of Na(+)-Ca2+ exchange and of mitochondria in the regulation of presynaptic Ca2+ and spontaneous glutamate release. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  H. Yawo Protein kinase C potentiates transmitter release from the chick ciliary presynaptic terminal by increasing the exocytotic fusion probability , 1999, The Journal of physiology.

[11]  G. Augustine,et al.  Regulation of synaptic vesicle fusion by protein kinase C , 1999, The Journal of physiology.

[12]  Haruo Kasai,et al.  Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function , 1999, Trends in Neurosciences.

[13]  I. Parnas,et al.  Simultaneous measurement of evoked release and [Ca2+]i in a crayfish release bouton reveals high affinity of release to Ca2+. , 1999, Journal of neurophysiology.

[14]  The Synaptophysin-Synaptobrevin Complex , 1999 .

[15]  T. Südhof,et al.  Genetics of synaptic vesicle function: toward the complete functional anatomy of an organelle. , 1999, Annual review of physiology.

[16]  T. Abrams,et al.  Use-Dependent Decline of Paired-Pulse Facilitation atAplysia Sensory Neuron Synapses Suggests a Distinct Vesicle Pool or Release Mechanism , 1998, The Journal of Neuroscience.

[17]  R. Murphey,et al.  Target neuron specification of short-term synaptic facilitation and depression in the cricket CNS. , 1998, Journal of neurobiology.

[18]  B. Gähwiler,et al.  Target cell-specific modulation of transmitter release at terminals from a single axon. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Südhof,et al.  A Tripartite Protein Complex with the Potential to Couple Synaptic Vesicle Exocytosis to Cell Adhesion in Brain , 1998, Cell.

[20]  W G Regehr,et al.  Calcium Dependence and Recovery Kinetics of Presynaptic Depression at the Climbing Fiber to Purkinje Cell Synapse , 1998, The Journal of Neuroscience.

[21]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[22]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Bekkers,et al.  N- and P/Q-Type Ca2+ Channels Mediate Transmitter Release with a Similar Cooperativity at Rat Hippocampal Autapses , 1998, The Journal of Neuroscience.

[24]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[25]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[26]  T. Südhof,et al.  RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. , 1998, Annual review of neuroscience.

[27]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[28]  W. Regehr Interplay between sodium and calcium dynamics in granule cell presynaptic terminals. , 1997, Biophysical journal.

[29]  E. Neher,et al.  Presynaptic Depression at a Calyx Synapse: The Small Contribution of Metabotropic Glutamate Receptors , 1997, The Journal of Neuroscience.

[30]  E. F. Stanley The calcium channel and the organization of the presynaptic transmitter release face , 1997, Trends in Neurosciences.

[31]  H. Markram A network of tufted layer 5 pyramidal neurons. , 1997, Cerebral cortex.

[32]  A. Thomson Activity‐dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro , 1997, The Journal of physiology.

[33]  T. Südhof,et al.  The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion , 1997, Nature.

[34]  W G Regehr,et al.  Control of Neurotransmitter Release by Presynaptic Waveform at the Granule Cell to Purkinje Cell Synapse , 1997, The Journal of Neuroscience.

[35]  J. Lacaille,et al.  Properties of unitary IPSCs in hippocampal pyramidal cells originating from different types of interneurons in young rats. , 1997, Journal of neurophysiology.

[36]  E. F. Stanley,et al.  Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels , 1997, Nature.

[37]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[38]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[39]  J. Deuchars,et al.  Properties of single axon excitatory postsynaptic potentials elicited in spiny interneurons by action potentials in pyramidal neurons in slices of rat neocortex , 1995, Neuroscience.

[40]  R. Llinás,et al.  The concept of calcium concentration microdomains in synaptic transmission , 1995, Neuropharmacology.

[41]  T. Freund,et al.  Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed‐back Activation , 1995, The European journal of neuroscience.

[42]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[43]  T. Südhof,et al.  Essential functions of synapsins I and II in synaptic vesicle regulation , 1995, Nature.

[44]  T. Südhof,et al.  Synaptic Core Complex of Synaptobrevin, Syntaxin, and SNAP25 Forms High Affinity -SNAP Binding Site (*) , 1995, The Journal of Biological Chemistry.

[45]  J. Deuchars,et al.  Temporal and spatial properties of local circuits in neocortex , 1994, Trends in Neurosciences.

[46]  T. Südhof,et al.  Phosphorylation of dynamin I and synaptic-vesicle recycling , 1994, Trends in Neurosciences.

[47]  C. Govind,et al.  “Strong” and “weak” synaptic differentiation in the crayfish opener muscle: Structural correlates , 1994, Synapse.

[48]  R. Llinás,et al.  Localization of calcium concentration microdomains at the active zone in the squid giant synapse. , 1994, Advances in second messenger and phosphoprotein research.

[49]  C. Lévêque,et al.  Synaptotagmin Associates with Presynaptic Calcium Channels and Is a Lambert‐Eaton Myasthenic Syndrome Antigen a , 1993, Annals of the New York Academy of Sciences.

[50]  J. Deuchars,et al.  Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. , 1993, Journal of neurophysiology.

[51]  E. F. Stanley Single calcium channels and acetylcholine release at a presynaptic nerve terminal , 1993, Neuron.

[52]  John O'Keefe,et al.  Hippocampus, theta, and spatial memory , 1993, Current Opinion in Neurobiology.

[53]  J. Walrond,et al.  Two structural adaptations for regulating transmitter release at lobster neuromuscular synapses , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  G. Davis,et al.  A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  T. Südhof,et al.  Synaptic Vesicle Traffic: Rush Hour in the Nerve Terminal , 1993, Journal of neurochemistry.

[56]  M. Poupon,et al.  Expression of synaptotagmin and syntaxin associated with N‐type calcium channels in small cell lung cancer , 1993, FEBS letters.

[57]  V. O'Connor,et al.  On the structure of the ‘synaptosecretosome’ Evidence for a neurexin/synaptotagmin/syntaxin/Ca2+ channel complex , 1993, FEBS letters.

[58]  P. Katz,et al.  Facilitation and depression at different branches of the same motor axon: evidence for presynaptic differences in release , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[60]  K. Zipser,et al.  Role of residual calcium in synaptic depression and posttetanic potentiation: Fast and slow calcium signaling in nerve terminals , 1991, Neuron.

[61]  P. Greengard,et al.  Regulation by synapsin I and Ca(2+)‐calmodulin‐dependent protein kinase II of the transmitter release in squid giant synapse. , 1991, The Journal of physiology.

[62]  D. A. Baxter,et al.  Synaptic plasticity at crayfish neuromuscular junctions: Facilitation and augmentation , 1991, Synapse.

[63]  T. Südhof,et al.  The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization. , 1990, The Journal of biological chemistry.

[64]  The exponent of the calcium power function is reduced during steady-state facilitation in neuron R15 of Aplysia , 1986, Brain Research.

[65]  E. F. Stanley Decline in calcium cooperativity as the basis of facilitation at the squid giant synapse , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  S. J. Smith,et al.  Calcium entry and transmitter release at voltage‐clamped nerve terminals of squid. , 1985, The Journal of physiology.

[67]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[68]  E. McLachlan The statistics of transmitter release at chemical synapses. , 1978, International review of physiology.

[69]  Robert S. Zucker Synaptic Plasticity at Crayfish Neuromuscular Junctions , 1977 .

[70]  J. Zengel,et al.  Stimulation‐induced factors which affect augmentation and potentiation of trasmitter release at the neuromuscular junction. , 1976, The Journal of physiology.

[71]  K. Magleby,et al.  A dual effect of repetitive stimulation on post‐tetanic potentiation of transmitter release at the frog neuromuscular junction. , 1975, The Journal of physiology.

[72]  P. Gage,et al.  On facilitation of transmitter release at the toad neuromuscular junction , 1974, The Journal of physiology.

[73]  C. Nicholson,et al.  Calcium Transient in Presynaptic Terminal of Auid Giant Synapse: Detection with Aequorin , 1972, Science.

[74]  B. Katz,et al.  Further study of the role of calcium in synaptic transmission , 1970, The Journal of physiology.

[75]  W. Betz,et al.  Depression of transmitter release at the neuromuscular junction of the frog , 1970, The Journal of physiology.

[76]  E. M. Landau The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian motor nerve terminals , 1969, The Journal of physiology.

[77]  A Mallart,et al.  The relation between quantum content and facilitation at the neuromuscular junction of the frog , 1968, The Journal of physiology.

[78]  J. Hubbard,et al.  On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses , 1968, The Journal of physiology.

[79]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[80]  A Mallart,et al.  An analysis of facilitation of transmitter release at the neuromuscular junction of the frog , 1967, The Journal of physiology.

[81]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[82]  B. Katz,et al.  The timing of calcium action during neuromuscular transmission , 1967, The Journal of physiology.

[83]  J. Hubbard Repetitive stimulation at the mammalian neuromuscular junction, and the mobilization of transmitter , 1963, The Journal of physiology.

[84]  A. W. Liley,et al.  The quantal components of the mammalian end‐plate potential , 1956, The Journal of physiology.