A Template‐Assembled Synthetic U‐Quadruplex

Fo(u)r U: A lipophilic cavitand with four dinucleoside (uridine) residues has been synthesized and characterized. NMR spectroscopy evidence suggests the self-assembly of a U-quadruplex by the uracil nucleobases in organic solution under ambient conditions.

[1]  J. Florián,et al.  Intramolecular base stacking of dinucleoside monophosphate anions in aqueous solution. , 2012, The journal of physical chemistry. B.

[2]  J. Sherman,et al.  Synthesis and characterization of a template-assembled synthetic U-quartet. , 2012, Chemical communications.

[3]  P. Dumy,et al.  The use of a peptidic scaffold for the formation of stable guanine tetrads: control of a H-bonded pattern in water. , 2011, Chemistry.

[4]  J. Mergny,et al.  DOTASQ as a prototype of nature-inspired G-quadruplex ligand. , 2011, Chemical Communications.

[5]  Stephen Neidle,et al.  Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? , 2011, Nature Reviews Drug Discovery.

[6]  P. Labbé,et al.  Template-assembled synthetic G-quadruplex (TASQ): a useful system for investigating the interactions of ligands with constrained quadruplex topologies. , 2010, Chemistry.

[7]  M. Komiyama,et al.  A U-tetrad stabilizes human telomeric RNA G-quadruplex structure. , 2010, Journal of the American Chemical Society.

[8]  A. Phan Human telomeric G‐quadruplex: structures of DNA and RNA sequences , 2010, The FEBS journal.

[9]  Stephen Neidle,et al.  Human telomeric G‐quadruplex: The current status of telomeric G‐quadruplexes as therapeutic targets in human cancer , 2010, The FEBS journal.

[10]  J. Sherman,et al.  Cation-complexation behavior of template-assembled synthetic G-quartets. , 2009, The Journal of organic chemistry.

[11]  Stephen Neidle,et al.  The structures of quadruplex nucleic acids and their drug complexes. , 2009, Current opinion in structural biology.

[12]  S. Balasubramanian,et al.  G-quadruplex nucleic acids as therapeutic targets. , 2009, Current opinion in chemical biology.

[13]  P. Labbé,et al.  A Novel Conformationally Constrained Parallel G Quadruplex , 2008, Chembiochem : a European journal of chemical biology.

[14]  R. Vilar,et al.  Stabilisation of G-quadruplex DNA by small molecules. , 2008, Current topics in medicinal chemistry.

[15]  J. Sherman,et al.  Template-assembled synthetic G-quartets (TASQs). , 2008, Angewandte Chemie.

[16]  Kwok‐yin Wong,et al.  G‐Quadruplexes: Targets in Anticancer Drug Design , 2008, ChemMedChem.

[17]  R. Granet,et al.  Microwave-assisted synthesis of a triazole-linked 3′–5′ dithymidine using click chemistry , 2008 .

[18]  Dinshaw J. Patel,et al.  Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics , 2007, Nucleic acids research.

[19]  Fancui Meng,et al.  Substituent effect of halogen (F, Cl and Br) on uracil tetrad : A theoretical study , 2006 .

[20]  G. Piccialli,et al.  Synthesis and characterization of a bunchy oligonucleotide forming a monomolecular parallel quadruplex structure in solution , 2004 .

[21]  Ke Shi,et al.  An eight-stranded helical fragment in RNA crystal structure: implications for tetraplex interaction. , 2003, Structure.

[22]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[23]  D. Dean AN IMPROVED SYNTHESIS OF 5′-AMINO-5′-DEOXYGUANOSINE , 2002 .

[24]  M. Sundaralingam,et al.  X-ray analysis of an RNA tetraplex (UGGGGU)4 with divalent Sr2+ ions at subatomic resolution (0.61 Å) , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Leszczynski,et al.  A Theoretical Study of Thymine and Uracil Tetrads: Structures, Properties, and Interactions with the Monovalent K+ Cation , 2001 .

[26]  Thomas Steinke,et al.  Density functional study of guanine and uracil quartets and of guanine quartet/metal ion complexes , 2001, J. Comput. Chem..

[27]  Jeffery T. Davis,et al.  Toward artificial ion channels: self-assembled nanotubes from calix[4]arene–guanosine conjugates , 2000 .

[28]  P. Kuchel,et al.  NMR diffusion measurements to characterise membrane transport and solute binding , 1997 .

[29]  J. R. Williamson,et al.  G-quartet structures in telomeric DNA. , 1994, Annual review of biophysics and biomolecular structure.

[30]  D. Cram,et al.  Host-guest complexation. 65. Hemicarcerands that encapsulate hydrocarbons with molecular weights greater than two hundred , 1993 .

[31]  P. Moore,et al.  Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. , 1992, Biochemistry.

[32]  D. McGee,et al.  Acyclic nucleoside analogues: methods for the preparation of 2′,3′-secoguanosine, 5′-deoxy-2′,3′-secoguanosine, and(R,S)-9-[1-(2-hydroxyethoxy)-2-hydroxyethyl]guanine , 1986 .

[33]  J. Roberts,et al.  Self-association and base pairing of guanosine, cytidine, adenosine, and uridine in dimethyl sulfoxide solution measured by 15N nuclear magnetic resonance spectroscopy. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Bugg,et al.  Relationship between the mutagenic and base-stacking properties of halogenated uracil derivatives. The crystal structures of 5-chloro- and 5-bromouracil. , 1975, Biochimica et biophysica acta.

[35]  N. Li,et al.  Proton magnetic resonance studies of self-association and metal complexation of nucleosides in dimethyl sulfoxide. , 1968, Journal of the American Chemical Society.