Aspects of correlation function realizability

The pair-correlation function g2(r) describes short-range order in many-particle systems. It must obey two necessary conditions: (i) non-negativity for all distances r, and (ii) non-negativity of its associated structure factor S(k) for all k. For the elementary unit step-function g2 form, previous work [F. H. Stillinger, S. Torquato, J. M. Eroles, and T. M. Truskett, J. Phys. Chem. B 105, 6592 (2001)] indicates that (i) and (ii) could be formally satisfied, but only up to a terminal density at which the covering fraction of particle exclusion diameters equaled 2−d in d dimensions. To test whether the unit step g2 is actually achievable in many-particle systems up to the apparent terminal density, a stochastic optimization procedure has been used to shift particles in large test systems toward this target g2. Numerical calculations for d=1 and 2 confirm that the step function g2 is indeed realizable up to the terminal density, but with substantial deviation from the configurational preferences of equilibr...

[1]  Doros N. Theodorou,et al.  Parallel tempering method for reconstructing isotropic and anisotropic porous media , 2002 .

[2]  F. Stillinger,et al.  Controlling the Short-Range Order and Packing Densities of Many-Particle Systems† , 2002, cond-mat/0207084.

[3]  Salvatore Torquato,et al.  Equi-g(r) sequence of systems derived from the square-well potential , 2002 .

[4]  Salvatore Torquato,et al.  Iso-g(2) Processes in Equilibrium Statistical Mechanics† , 2001 .

[5]  A. Mitsutake,et al.  Replica-exchange simulated tempering method for simulations of frustrated systems , 2000, cond-mat/0009387.

[6]  Salvatore Torquato,et al.  Generating random media from limited microstructural information via stochastic optimization , 1999 .

[7]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[8]  Rintoul,et al.  Reconstruction of the Structure of Dispersions , 1997, Journal of colloid and interface science.

[9]  Rintoul,et al.  Algorithm to compute void statistics for random arrays of disks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  S. Torquato,et al.  Chord-length distribution function for two-phase random media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[12]  H. L. Frisch,et al.  Inverse Problem in Classical Statistical Mechanics , 1969 .

[13]  William G. Hoover,et al.  Melting Transition and Communal Entropy for Hard Spheres , 1968 .

[14]  Howard Reiss,et al.  Statistical Mechanics of Rigid Spheres , 1959 .

[15]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[16]  S. Torquato Random Heterogeneous Materials , 2002 .

[17]  S. Torquato,et al.  Reconstructing random media , 1998 .

[18]  S. Torquato,et al.  Lineal-path function for random heterogeneous materials. , 1992, Physical review. A, Atomic, molecular, and optical physics.