The Theory of Optimal Load Transmission by Flexure

Publisher Summary This chapter outlines optimality conditions for truss-like continua in which the cross-sectional areas are proportional to the absolute value of the member forces. It has been found that the optimal moment field is the same for any one of the following three criteria: rigid-plastic grillages: prescribed ultimate load; linearly or nonlinearly elastic grillages: prescribed maximum stress; and linearly elastic grillages: prescribed value of the work of the specified loads on the actual elastic deflections. The same moment fields minimize the volume of continuously variable reinforcement in fiber-reinforced plates of constant thickness. The problem is also referred to as the “minimum moment-volume problem” because it gives a minimum value for the integral of the sum of the absolute values of principal moments, considering the set of all statically admissible moment fields for given boundary conditions and loading. The theory discussed has several useful applications, such as beam systems in floors and roofs, and reinforced concrete slabs. Another aspect of grillage design is that the quantitative implications of optimization appear to be more significant than for most other types of structures.

[1]  Zenon Mróz,et al.  Optimal design of structures with variable support conditions , 1975 .

[2]  G. Dupuis,et al.  Minimum-weight design of continuous beams under displacement and stress constraints , 1972 .

[3]  Jacques Heyman,et al.  ON THE ABSOLUTE MINIMUM WEIGHT DESIGN OF FRAMED STRUCTURES , 1959 .

[4]  R. T. Shield,et al.  Plate design for minimum weight , 1960 .

[5]  George I. N. Rozvany Optimal Plastic Design With Discontinuous Cost Functions , 1974 .

[6]  G. Rozvany Optimal plastic design for partially pressigned strength distribution , 1973 .

[7]  William Prager,et al.  Optimal layout of a truss for alternative loads , 1973 .

[8]  Jawalker K. Sridhar Rao,et al.  Minimum Reinforcement in Clamped Square Slabs , 1970 .

[9]  C. T. Morley,et al.  The minimum reinforcement of concrete slabs , 1966 .

[11]  M. A. Save A Unified Formulation of the Theory of Optimal Plastic Design with Convex Cost Function , 1972 .

[12]  G. I. N. Rozvany,et al.  Recent advances in optimal plastic design , 1974 .

[13]  On the optimum design of reinforced slabs , 1967 .

[14]  W. Prager,et al.  Optimal plastic design of circular and annular sandwich plates with piecewise constant cross section , 1969 .

[15]  William Prager,et al.  Minimum-weight design with piecewise constant specific stiffness , 1968 .

[16]  E. F. Masur Optimal structural design for a discrete set of available structural members , 1974 .

[17]  W. Prager Optimal design of statically determinate beams for given deflection , 1971 .

[18]  D. C. Drucker,et al.  BOUNDS ON MINIMUM WEIGHT DESIGNS , 1957 .

[19]  George I. N. Rozvany,et al.  Plastic design of beams: Optimal locations of supports and steps in yield moment , 1975 .

[20]  Gin Rozvany Gin,et al.  PLASTIC DESIGN OF AXISYMMETRIC SLABS , 1970 .

[21]  E. W. Parkes,et al.  Joints in optimum frameworks , 1975 .

[22]  J. Foulkes,et al.  The minimum-weight design of structural frames , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  George I. N. Rozvany,et al.  Slabs with Variable Straight Reinforcement , 1971 .

[24]  G. Rozvany Absolute Optima in Plastic Design for Preassigned Shape , 1974 .

[25]  G. Rozvany,et al.  Extensions of the Prager-Shield theory of optimal plastic design , 1972 .

[26]  Ralph L. Barnett,et al.  Minimum-Weight Design of Beams for Deflection , 1961 .

[27]  RECTANGULAR GRILLAGES OF LEAST WEIGHT. , 1972 .

[28]  William Prager,et al.  A General Theory of Optimal Plastic Design , 1967 .

[29]  Robert E. Melchers,et al.  On the theory of optimal, edge beam supported, fibre-reinforced plates , 1974 .

[30]  W. Prager,et al.  Optimal design of partially discretized grillages , 1976 .

[31]  William Prager,et al.  Introduction to structural optimization , 1974 .

[32]  G. I. N. Rozvany,et al.  Dual Formulation of Variational Problems in Optimal Design , 1972 .

[33]  George I. N. Rozvany,et al.  Optimal Design Taking Cost of Joints into Account , 1975 .

[34]  William Prager,et al.  Optimal structural design for given deflection , 1970 .

[35]  G. I. N. Rozvany,et al.  Optimization of Unspecified Generalized Forces in Structural Design , 1974 .

[36]  Jenn-Ming Chern Optimal structural design for given deflection in presence of body forces , 1971 .

[37]  Zenon Mróz,et al.  Multiparameter Optimal Design of Plates and Shells , 1972 .

[38]  W. Prager On Ideal Locking Materials , 1957 .

[39]  D. C. Drucker,et al.  Design for Minimum Weight. , 1956 .

[40]  William Prager,et al.  Optimal structural design for given stiffness in stationary creep , 1968 .

[41]  George I. N. Rozvany A Unified Theory of Optimal Moment Fields , 1974 .

[42]  D. C. Drucker,et al.  Plastic and Elastic Design of Slabs and Plates , 1963 .

[43]  Minimum-weight design of beams for multiple loading☆ , 1967 .

[44]  Aris Phillips,et al.  Plastic Analysis of Structures , 1959 .

[45]  George I. N. Rozvany,et al.  Grillages of maximum strength and maximum stiffness , 1972 .

[46]  William Prager,et al.  A note on discretized michell structures , 1974 .

[47]  Philip G. Kirmser,et al.  Minimum Weight Design of Beams With Inequality Constraints on Stress and Deflection , 1967 .

[48]  Ernest F. Masur,et al.  Optimum Stiffness and Strength of Elastic Structures , 1970 .

[49]  G. Rozvany,et al.  Grillages of least weight—Simply supported boundaries , 1973 .

[50]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[51]  Robert E. Melchers,et al.  On the theory of optimal, constant thickness fibre-reinforced plates—II , 1973 .

[52]  William Prager,et al.  Problems of Optimal Structural Design , 1968 .

[53]  George I. N. Rozvany,et al.  On circular footing slabs , 1971 .

[54]  Lower-Bound Optimal Design of Concrete Structures , 1970 .