A pruning method for the identification of polynomial NARMAX models

[1]  H. Akaike A new look at the statistical model identification , 1974 .

[2]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[3]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[4]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[5]  L. A. Aguirre,et al.  Validating Identified Nonlinear Models with Chaotic Dynamics , 1994 .

[6]  L. A. Aguirre SOME REMARKS ON STRUCTURE SELECTION FOR NONLINEAR MODELS , 1994 .

[7]  L. A. Aguirre,et al.  Dynamical effects of overparametrization in nonlinear models , 1995 .

[8]  L. A. Aguirre,et al.  Improved structure selection for nonlinear models based on term clustering , 1995 .

[9]  L. A. Aguirre,et al.  EFFECTS OF THE SAMPLING TIME ON THE DYNAMICS AND IDENTIFICATION OF NONLINEAR MODELS , 1995 .

[10]  L. A. Aguirre,et al.  Cluster analysis of NARMAX models for signal-dependent systems , 1998 .

[11]  Stephen A. Billings,et al.  An alternative solution to the model structure selection problem , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[12]  Luigi Piroddi,et al.  NARX Modelling of Radial Crest Displacements of the Schlegeis Arch Dam , 2001 .

[13]  Luigi Piroddi,et al.  SEISMIC BEHAVIOUR OF BUTTRESS DAMS: NON-LINEAR MODELLING OF A DAMAGED BUTTRESS BASED ON ARX/NARX MODELS , 2001 .

[14]  Alberto Leva,et al.  NARX-based technique for the modelling of magneto-rheological damping devices , 2002 .