Revisiting the spread spectrum effect in radio interferometric imaging: a sparse variant of the w-projection algorithm

ABSTRACT Next-generation radio interferometric telescopes will exhibit non-coplanar baseline configu-rations and wide field-of-views, inducing a w-modulation of the sky image, which induces thespread spectrum e ect. We revisit the impact of this e ect on imaging quality and study a newalgorithmic strategy to deal with the associated operator. In previous studies it has been shownthat image recovery in the framework of compressed sensing is improved due to this e ect,where the w-modulation can increase the incoherence between measurement and sparsify-ing signal representations. For the purpose of computational eciency, idealised experimentswith a constant baseline component w were performed. We extend this analysis to the morerealistic setting where the w-component varies for each visibility measurement. Firstly, incor-porating varying w-components into imaging algorithms is a computational demanding task.We propose a variant of the w-projection algorithm, which is based on an adaptive sparsifi-cation procedure, and incorporate it in compressed sensing imaging methods. Secondly, weshow that for varying w-components, reconstruction quality is significantly improved com-pared to no w-modulation, reaching levels comparable to a constant, maximal w-component.This finding confirms that one may seek to optimise future telescope configurations to pro-mote large w-components, thus enhancing the fidelity of image reconstruction.Key words: techniques: interferometric – methods: numerical.

[1]  P. Vandergheynst,et al.  Compressed sensing imaging techniques for radio interferometry , 2008, 0812.4933.

[2]  J. D. McEwen,et al.  Compressed sensing for wide-field radio interferometric imaging , 2010, 1010.3658.

[3]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[4]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[5]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[6]  L. Goddard Information Theory , 1962, Nature.

[7]  S. Klein Astronomy and astrophysics with , 2008 .

[8]  G. Woan,et al.  A generalized measurement equation and van Cittert‐Zernike theorem for wide‐field radio astronomical interferometry , 2008, 0812.0141.

[9]  A. Lee Swindlehurst,et al.  IEEE Journal of Selected Topics in Signal Processing Inaugural Issue: [editor-in-chief's message] , 2007, J. Sel. Topics Signal Processing.

[10]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[11]  J. D. McEwen,et al.  Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio‐interferometric imaging , 2012, 1205.3123.

[12]  A. M. M. Scaife,et al.  Simulating full‐sky interferometric observations , 2008, 0803.2165.

[13]  J. Coyle Inverse Problems , 2004 .

[14]  Yannick Boursier,et al.  Spread spectrum for imaging techniques in radio interferometry , 2009, ArXiv.

[15]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[16]  Tim J. Cornwell,et al.  The Noncoplanar Baselines Effect in Radio Interferometry: The W-Projection Algorithm , 2008, IEEE Journal of Selected Topics in Signal Processing.

[17]  J. Usón,et al.  Correcting direction-dependent gains in the deconvolution of radio interferometric images , 2008, 0805.0834.

[18]  F. Hoog,et al.  The application of compressive sampling to radio astronomy - II. Faraday rotation measure synthesis , 2011, 1106.1709.

[19]  Y. Wiaux,et al.  Compressed sensing reconstruction of a string signal from interferometric observations of the cosmic microwave background , 2009, 0908.4179.

[20]  Tim J. Cornwell,et al.  Multiscale CLEAN Deconvolution of Radio Synthesis Images , 2008, IEEE Journal of Selected Topics in Signal Processing.

[21]  C. Carilli,et al.  Science with the Square Kilometer Array , 2004, astro-ph/0409274.

[22]  Marcus Magnor,et al.  SparseRI: A Compressed Sensing Framework for Aperture Synthesis Imaging in Radio Astronomy , 2010 .

[23]  S. Bhatnagar,et al.  Applying full polarization A-Projection to very wide field of view instruments: An imager for LOFAR , 2012, 1212.6178.

[24]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[25]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[26]  Yves Wiaux,et al.  PURIFY: a new approach to radio-interferometric imaging , 2013, 1307.4370.

[27]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[28]  Feng Li,et al.  The application of compressive sampling to radio astronomy I: Deconvolution , 2011, 1106.1711.

[29]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.