Lanczos based preconditioner for discrete ill-posed problems

In this paper we use the Lanczos process for preconditioning discrete ill-posed problems. We show that by few steps of this process one can obtain a well qualified and efficient preconditioner. This is a general method in the sense that it is not limited only to special structured matrices and the matrix–vector multiplications can be carried out in O(n) operations. Also even in problems with structured matrices this preconditioner performs more efficiently than the circulant and Kronecker product approximate preconditioners.

[1]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[2]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[3]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[4]  Misha Elena Kilmer,et al.  Kronecker product approximation for preconditioning in three-dimensional imaging applications , 2006, IEEE Transactions on Image Processing.

[5]  J. Nagy,et al.  KRONECKER PRODUCT AND SVD APPROXIMATIONS IN IMAGE RESTORATION , 1998 .

[6]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[7]  C. Paige Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .

[8]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[9]  James G. Nagy,et al.  Optimal Kronecker Product Approximation of Block Toeplitz Matrices , 2000, SIAM J. Matrix Anal. Appl..

[10]  Toke Koldborg Jensen,et al.  An adaptive pruning algorithm for the discrete L-curve criterion , 2007 .

[11]  Franklin T. Luk,et al.  A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  Misha Elena Kilmer,et al.  Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..

[14]  G. Golub,et al.  Estimation of the L-Curve via Lanczos Bidiagonalization , 1999 .

[15]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[16]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[17]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[18]  Lothar Reichel,et al.  L-Curve and Curvature Bounds for Tikhonov Regularization , 2004, Numerical Algorithms.

[19]  James G. Nagy,et al.  Preconditioned iterative regularization for Ill-posed problems , 1992 .

[20]  James G. Nagy,et al.  Inverse Toeplitz preconditioners for ill-posed problems , 1998 .

[21]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[22]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .