Optical torque from enhanced scattering by multipolar plasmonic resonance

Abstract We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field and thereby produce scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamaterials.

[1]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[2]  D. Grier A revolution in optical manipulation , 2003, Nature.

[3]  C. Mirkin,et al.  Multipole plasmon resonances in gold nanorods. , 2006, The journal of physical chemistry. B.

[4]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[5]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[6]  Eiji Higurashi,et al.  Optically induced rotation of anisotropic micro‐objects fabricated by surface micromachining , 1994 .

[7]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[8]  J. Hafner,et al.  Symmetry breaking in individual plasmonic nanoparticles. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  John Henry Poynting,et al.  The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light , 1909 .

[10]  Wei-Yi Tsai,et al.  Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. , 2014, Nano letters.

[11]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[12]  John Henry Poynting,et al.  On the transfer of energy in the electromagnetic field , 1883, Proceedings of the Royal Society of London.

[13]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[14]  L. Novotný,et al.  Antennas for light , 2011 .

[15]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[16]  George C Schatz,et al.  Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. , 2005, Journal of the American Chemical Society.

[17]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[18]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.

[19]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[20]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[21]  E. Coronado,et al.  Plasmonic Nanoantennas: Angular Scattering Properties of Multipole Resonances in Noble Metal Nanorods , 2008 .

[22]  Mark D. Huntington,et al.  Polarization-dependent multipolar plasmon resonances in anisotropic multiscale au particles. , 2012, ACS nano.

[23]  K. An,et al.  An optical spin micromotor , 2000 .

[24]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[25]  Federico Capasso,et al.  Fano-like interference in self-assembled plasmonic quadrumer clusters. , 2010, Nano letters.

[26]  Stephen M. Barnett,et al.  Optical Angular Momentum , 2003 .

[27]  Younan Xia,et al.  Optical near-field mapping of plasmonic nanoprisms. , 2008, Nano letters.

[28]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[29]  Xiang Zhang,et al.  Light-driven nanoscale plasmonic motors. , 2010, Nature nanotechnology.

[30]  Kin Hung Fung,et al.  Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.

[31]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[32]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[33]  Mikael Käll,et al.  Ultrafast spinning of gold nanoparticles in water using circularly polarized light. , 2013, Nano letters.

[34]  Philip L. Marston,et al.  Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave , 1984 .

[35]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[36]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[37]  Amr A E Saleh,et al.  Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. , 2012, Nano letters.

[38]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[39]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[40]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[41]  Wei Liu,et al.  Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters. , 2012, Nanoscale.

[42]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[43]  Johannes Courtial,et al.  Optically controlled three-dimensional rotation of microscopic objects , 2003 .

[44]  H. Rubinsztein-Dunlop,et al.  Symmetry and the generation and measurement of optical torque , 2008, 0812.2039.

[45]  C. Rao,et al.  Nanorotors using asymmetric inorganic nanorods in an optical trap , 2006 .

[46]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[47]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[48]  M. Nieto-Vesperinas,et al.  Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  L. Torner,et al.  Twisted Photons: Applications of Light with Orbital Angular Momentum , 2011 .

[50]  S. Maier,et al.  Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution. , 2013, ACS nano.

[51]  Halina Rubinsztein-Dunlop,et al.  Integrated optomechanical microelements. , 2007, Optics express.

[52]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[53]  Jun Chen,et al.  Negative Optical Torque , 2014, Scientific Reports.

[54]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[55]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[56]  J. H. Poynting XV. On the transfer of energy in the electromagnetic field , 1884, Philosophical Transactions of the Royal Society of London.

[57]  N. Fang,et al.  Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. , 2009, ACS nano.

[58]  Cheng-Wei Qiu,et al.  Linear momentum increase and negative optical forces at dielectric interface , 2013, Nature Photonics.

[59]  Jun Chen,et al.  Optical pulling force , 2011 .