A recursive partitioning algorithm for space information flow

Space Information Flow (SIF) is a new research paradigm that studies network coding in a geometric space, which is different with Network Information Flow (NIF) that studies network coding in a graph. One of the key open problems at the core of SIF is to design an algorithm that computes optimal SIF solutions. A new heuristic SIF algorithm based on non-uniform recursive space partitioning is proposed in this work, for computing SIF for any density distribution of given terminal nodes in 2-D Euclidean space. Simulation results show that the new algorithm has low computational complexity and converges to optimal solutions promptly.

[1]  Zongpeng Li,et al.  Space information flow: Multiple unicast , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[2]  Ronald L. Graham,et al.  Steiner Trees for Ladders , 1978 .

[3]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[4]  Zongpeng Li,et al.  Bounding the Coding Advantage of Combination Network Coding in Undirected Networks , 2012, IEEE Transactions on Information Theory.

[5]  Chuan Wu,et al.  Space Information Flow , 2011 .

[6]  Martin Zachariasen,et al.  Euclidean Steiner minimum trees: An improved exact algorithm , 1997 .

[7]  Zongpeng Li,et al.  Min-Cost Multicast of Selfish Information Flows , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[8]  Van Laarhoven,et al.  Exact and heuristic algorithms for the Euclidean Steiner tree problem , 2010 .

[9]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[10]  Xin Wang,et al.  Min-cost multicast networks in Euclidean space , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[11]  BERNARD M. WAXMAN,et al.  Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..

[12]  R. S. Booth,et al.  Steiner minimal trees on regular polygons with centre , 1995, Discret. Math..

[13]  Xu Du,et al.  On Space Information Flow: Single multicast , 2013, 2013 International Symposium on Network Coding (NetCod).

[14]  Zongpeng Li,et al.  A Geometric Perspective to Multiple-Unicast Network Coding , 2014, IEEE Transactions on Information Theory.

[15]  Zongpeng Li,et al.  A geometric framework for investigating the multiple unicast network coding conjecture , 2012, 2012 International Symposium on Network Coding (NetCod).

[16]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.