A recursive partitioning algorithm for space information flow
暂无分享,去创建一个
[1] Zongpeng Li,et al. Space information flow: Multiple unicast , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[2] Ronald L. Graham,et al. Steiner Trees for Ladders , 1978 .
[3] H. Pollak,et al. Steiner Minimal Trees , 1968 .
[4] Zongpeng Li,et al. Bounding the Coding Advantage of Combination Network Coding in Undirected Networks , 2012, IEEE Transactions on Information Theory.
[5] Chuan Wu,et al. Space Information Flow , 2011 .
[6] Martin Zachariasen,et al. Euclidean Steiner minimum trees: An improved exact algorithm , 1997 .
[7] Zongpeng Li,et al. Min-Cost Multicast of Selfish Information Flows , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.
[8] Van Laarhoven,et al. Exact and heuristic algorithms for the Euclidean Steiner tree problem , 2010 .
[9] Sanjeev Arora,et al. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.
[10] Xin Wang,et al. Min-cost multicast networks in Euclidean space , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[11] BERNARD M. WAXMAN,et al. Routing of multipoint connections , 1988, IEEE J. Sel. Areas Commun..
[12] R. S. Booth,et al. Steiner minimal trees on regular polygons with centre , 1995, Discret. Math..
[13] Xu Du,et al. On Space Information Flow: Single multicast , 2013, 2013 International Symposium on Network Coding (NetCod).
[14] Zongpeng Li,et al. A Geometric Perspective to Multiple-Unicast Network Coding , 2014, IEEE Transactions on Information Theory.
[15] Zongpeng Li,et al. A geometric framework for investigating the multiple unicast network coding conjecture , 2012, 2012 International Symposium on Network Coding (NetCod).
[16] Rudolf Ahlswede,et al. Network information flow , 2000, IEEE Trans. Inf. Theory.