The Cassini Cosmic Dust Analyzer

The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.

[1]  H. Zook Evidence for ice meteoroids beyond 2 AU , 1980 .

[2]  E. Grün,et al.  Temporal fluctuations and anisotropy of the micrometeoroid flux in the Earth-Moon system measured by HEOS 2☆ , 1975 .

[3]  R. Marsden The sun and the heliosphere in three dimensions : proceedings of the XIXth ESLAB symposium, held in Les Diablerets, Switzerland, 4-6 June 1985 , 1986 .

[4]  G. Flynn,et al.  Stratospheric particles: Synchrotron x-ray fluorescence determination of trace element contents , 1987 .

[5]  A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids , 2000, astro-ph/0006209.

[6]  E. Grün,et al.  The Interaction of Solid Particles with the Interplanetary Medium , 1986 .

[7]  E. Grün,et al.  The dusty ballerina skirt of Jupiter , 1993 .

[8]  Siegfried Auer,et al.  Two high resolution velocity vector analyzers for cosmic dust particles , 1975 .

[9]  D. H. Humes,et al.  The interplanetary and near‐Jupiter meteoroid environments , 1974 .

[10]  E. Grün,et al.  Dynamics of dust ejected from Enceladus: Application to the Cassini dust detector , 1999 .

[11]  J. R. Hill,et al.  Electrodynamic processes in the ring system of Saturn , 1984 .

[12]  Fred L. Whipple,et al.  Sources of interplanetary dust , 1976 .

[13]  J. Simpson,et al.  A cometary and interplanetary dust experiment on the Vega spacecraft missions to Halley's Comet , 1985 .

[14]  J. A. M. McDonnell,et al.  Spatial and time variations of the interplanetary microparticle flux analysed from deep space probes Pioneers 8 and 9 , 1974 .

[15]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[16]  E. Jessberger,et al.  The volatile element enrichment of chondritic interplanetary dust particles , 1992 .

[17]  F. J. Low,et al.  INFRARED CIRRUS - NEW COMPONENTS OF THE EXTENDED INFRARED-EMISSION , 1984 .

[18]  Kai-Uwe Thiessenhusen,et al.  Dust Grains around Jupiter—The Observations of the Galileo Dust Detector , 2000 .

[19]  A. Heck,et al.  Galileo observes electromagnetically coupled dust in the Jovian magnetosphere , 1998 .

[20]  Y. Langevin,et al.  Composition of comet Halley dust particles from Vega observations , 1986 .

[21]  D. Galligan,et al.  Cluster analysis of the meteoroid orbit population , 1997 .

[22]  R. Durisen,et al.  Compositional Evolution of Saturn's Rings Due to Meteoroid Bombardment , 1998 .

[23]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[24]  E. Grün,et al.  Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere , 1993, Nature.

[25]  M. Kivelson,et al.  Constraints from Galileo observations on the origin of jovian dust streams , 1996, Nature.

[26]  J. Simpson,et al.  Cosmic dust investigations: II. Instruments for measurement of particle trajectory, velocity and mass☆ , 1989 .

[27]  S. Wyatt The electrostatic charge of interplanetary grains , 1969 .

[28]  Gregor E. Morfill,et al.  The Ulysses dust experiment , 1992 .

[29]  Ralf Srama,et al.  The dust sensor for CASSINI , 1997 .

[30]  Donald A. Gurnett,et al.  Micron-sized particles detected near Saturn by the Voyager plasma wave instrument☆ , 1983 .

[31]  E. Grün,et al.  The Galileo Dust Detector , 1992 .

[32]  D. Rabinowitz,et al.  Cosmic dust investigations I. PVDF detector signal dependence on mass and velocity for penetrating particles , 1989 .

[33]  E. Grün,et al.  Deflection of the local interstellar dust flow by solar radiation pressure. , 1999, Science.

[34]  M. Horányi Dust streams from Jupiter and Saturn , 2000 .

[35]  Simon F. Green,et al.  Laboratory calibration of the Cassini Cosmic Dust Analyser (CDA) using new, low density projectiles , 2002 .

[36]  E. Jessberger Rocky Cometary Particulates: Their Elemental, Isotopic and Mineralogical Ingredients , 1999 .

[37]  David P. Hamilton,et al.  Dust Measurements During Galileo's Approach to Jupiter and Io Encounter , 1996, Science.

[38]  Donald A. Gurnett,et al.  Micron‐sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments , 1997 .

[39]  T. Ahrens,et al.  MASS SPECTROMETER CALIBRATION OF HIGH VELOCITY IMPACT IONIZATION BASED COSMIC DUST ANALYZER , 1999 .

[40]  H. Tiersch,et al.  The electric potential on dust particles in comets and in interplanetary space , 1989 .

[41]  E. Grün,et al.  Two years of Ulysses dust data , 1995 .

[42]  H. Fechtig,et al.  Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft , 1993, Nature.

[43]  Heidelberg,et al.  Origins of Solar System Dust beyond Jupiter , 2002 .

[44]  E. Grün,et al.  New information recovered from the Pioneer 11 meteoroid experiment data , 2002 .

[45]  A. Harris,et al.  2060 Chiron: CCD and electronographic photometry , 1989 .

[46]  James G. Bradley,et al.  Cosmic dust analyzer for Cassini , 1996, Optics & Photonics.

[47]  D. Mendis,et al.  On the electrostatic charging of the cometary nucleus , 1981 .

[48]  H. Zook,et al.  Hyperbolic cosmic dust: Its origin and its astrophysical significance , 1975 .

[49]  E. Grün,et al.  The evolution of spokes in Saturn's B ring☆ , 1983 .

[50]  G. Morfill,et al.  A new instability of Saturn's ring , 1988 .

[51]  M. Banaszkiewicz,et al.  Unusual origin, evolution and fate of icy ejecta from Hyperion , 2001 .

[52]  Fred L. Whipple,et al.  On maintaining the meteoritic complex , 1967 .

[53]  E. Jessberger,et al.  The elemental abundances in interplanetary dust particles , 1996 .

[54]  Anthony J. Tuzzolino,et al.  Applications of PVDF dust sensor systems in space , 1996 .

[55]  G. Morfill,et al.  Origin and maintenance of the oxygen torus in Saturn's magnetosphere , 1993 .

[56]  P. Haff,et al.  Ring and plasma - The enigmae of Enceladus , 1983 .

[57]  O. Havnes Charges on dust particles , 1984 .

[58]  P. Lamy,et al.  Properties and Interactions of Interplanetary Dust , 1985 .

[59]  E. Sieveka,et al.  The neutral cloud and heavy ion inner torus at Saturn , 1989 .

[60]  A. Heck,et al.  Io as a source of the jovian dust streams , 2000, Nature.

[61]  R. Srama,et al.  Dust measurements in the Jovian magnetosphere , 1997 .

[62]  G. Morfill,et al.  A model for the formation of spokes in Saturn's ring , 1983 .

[63]  W. Ip,et al.  Dust Charges, Cloud Potential, and Instabilities in a Dust Cloud Embedded in a Plasma (JGR 92(A3) 1987) , 1987 .

[64]  O. E. Berg,et al.  The Pioneer 8 cosmic dust experiment , 1969 .

[65]  J. Bradley Analysis of chondritic interplanetary dust thin-sections , 1988 .

[66]  J. Simpson,et al.  Polarized polymer films as electronic pulse detectors of cosmic dust particles , 1985 .

[67]  P. R. Ratcliff,et al.  Plasma production by secondary impacts: Implications for velocity measurements by in-situ dust detectors , 1996 .

[68]  Sascha Kempf,et al.  The charge and velocity detector of the cosmic dust analyzer on Cassini , 2002 .

[69]  H. Zook,et al.  A Solar System dust ring with the Earth as its shepherd , 1988, Nature.

[70]  Peter F. Arndt,et al.  Properties of Interplanetary Dust: Information from Collected Samples , 2001 .

[71]  Joseph A. Burns,et al.  The dynamics of weakly charged dust: Motion through Jupiter's gravitational and magnetic fields , 1987 .

[72]  David P. Hamilton,et al.  Origin of Saturn's E Ring: Self-Sustained, Naturally , 1994, Science.

[73]  V. Dikarev Dynamics of particles in Saturn's E ring: effects of charge variations and the plasma drag force , 1999 .

[74]  J. Burns,et al.  Ejection of dust from Jupiter's gossamer ring , 1993, Nature.

[75]  D. Brownlee Cosmic Dust: Collection and Research , 1985 .

[76]  Jochen Kissel,et al.  Aspects of the major element composition of Halley's dust , 1988, Nature.

[77]  Douglas P. Hamilton,et al.  A tenuous dust ring of Jupiter formed by escaping ejecta from the Galilean satellites , 2000 .

[78]  H. Fechtig,et al.  Interplanetary dust and zodiacal light; Proceedings of the Colloquium, 31st, Heidelberg, West Germany, June 10-13, 1975 , 1976 .

[79]  D. H. Humes,et al.  Results of Pioneer 10 and 11 Meteoroid Experiments: Interplanetary and near‐Saturn , 1980 .

[80]  Tra-Mi Ho,et al.  Laboratory simulation improvements for hypervelocity micrometeorite impacts with a new dust particle source , 2001 .

[81]  O. Havnes,et al.  Oscillations and resonances in electrostatically supported dust rings , 1991 .

[82]  G. Morfill,et al.  Effects of electrostatic forces on the vertical structure of planetary rings , 1984 .

[83]  Guenther Eichhorn,et al.  The HEOS 2 and HELIOS micrometeoroid experiments , 1973 .

[84]  David P. Hamilton,et al.  Solar Wind Magnetic Field Bending of Jovian Dust Trajectories , 1996, Science.

[85]  M. Landgraf,et al.  Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements , 1999 .

[86]  H. Zook,et al.  A source for hyperbolic cosmic dust particles , 1975 .

[87]  E. L. Wright,et al.  Observational confirmation of a circumsolar dust ring by the COBE satellite , 1995, Nature.

[88]  J. Burns,et al.  Discovery of Jupiter's ‘gossamer’ ring , 1985, Nature.

[89]  R. Greenberg,et al.  The formation and origin of the IRAS zodiacal dust bands as a consequence of single collisions between asteroids , 1986 .

[90]  E. Jessberger,et al.  PIXE-characterization of stratospheric micrometeorites , 1986 .

[91]  J. L. Weinberg,et al.  Pioneer 10 Observations of Zodiacal Light Brightness Near the Ecliptic: Changes with Heliocentric Distance , 1976 .

[92]  L. Jaffe,et al.  Cassini/Huygens Science Instruments, Spacecraft, and Mission , 1997 .

[93]  E. Grün,et al.  Calibration of the Galileo/Ulysses dust detectors with different projectile materials and at varying impact angles , 1989 .

[94]  Hugo Fechtig,et al.  Collisional balance of the meteoritic complex , 1985 .