A Statistical Analysis of the “Heartbeat” Behavior of GRS 1915+105

GRS 1915+105 has been active for more than 26 years since it was discovered in 1992. There are hundreds of RXTE pointed observations on this source, and the quasi-regular flares with a slow rise and a sharp decrease (i.e. the "heartbeat" state) were recorded in more than 200 observations. The connections among the disk/corona, jet, and the disk wind at the heartbeat state have been extensively studied. In this work, we firstly perform a statistical analysis of the light curves and the X-ray spectra to investigate this peculiar state. We calculate the parameters for heartbeat cycles, including the recurrence time, the maximum and the minimum count rate, the flare amplitude, and the cumulative radiation for each cycle. The recurrence time has a bimodal distribution ranging from $\sim 20$ to $\sim 200$ s. The minimum count rate increases with increasing recurrence time; while the maximum count rate remains nearly constant around 2 Crab. Fitting the averaged spectrum for each observation, we find the strong correlations among the recurrence time, the apparent inner radius of the accretion disk (or the color correction factor), and the (nonthermal) X-ray luminosity. We suggest that the true inner edge of the accretion disk might always extend to the marginally stable orbit, while the change in corona size should result in the observed correlations.

[1]  A. Merloni,et al.  On the interpretation of the multicolour disc model for black hole candidates , 2000 .

[2]  Weimin Gu RADIATION PRESSURE-SUPPORTED ACCRETION DISKS: VERTICAL STRUCTURE, ENERGY ADVECTION, AND CONVECTIVE STABILITY , 2012, 1205.1387.

[3]  M. Feroci,et al.  The complex behaviour of the microquasar GRS 1915+105 in the ρ class observed with BeppoSAX - I. Timing analysis , 2010, 1001.4406.

[4]  T. Belloni,et al.  The Evolution of the Phase Lags Associated with the Type-C Quasi-periodic Oscillation in GX 339–4 during the 2006/2007 Outburst , 2017, 1707.06228.

[5]  Douglas M. Eardley,et al.  Black Holes in Binary Systems: Instability of Disk Accretion , 1974 .

[6]  University of Cambridge,et al.  NuSTAR SPECTROSCOPY OF GRS 1915+105: DISK REFLECTION, SPIN, AND CONNECTIONS TO JETS , 2013, 1308.4669.

[7]  R. Narayan,et al.  Observational evidence for a correlation between jet power and black hole spin , 2011, 1112.0569.

[8]  F. Takahara,et al.  On the Spectral Hardening Factor of the X-Ray Emission from Accretion Disks in Black Hole Candidates , 1995 .

[9]  H. F. Astrophysics,et al.  RADIATION PRESSURE AND MASS EJECTION IN ρ-LIKE STATES OF GRS 1915+105 , 2012, 1203.0301.

[10]  S. Nayakshin,et al.  Time-dependent disk models for the microquasar GRS 1915 + 105 , 1999, astro-ph/9905371.

[11]  Oxford,et al.  Limit-cycle behaviour of thermally unstable accretion flows on to black holes , 1998, astro-ph/9804233.

[12]  E. Massaro,et al.  Time properties of the the ρ-class burst of the microquasar GRS 1915+105 observed with BeppoSAX in April 1999 , 2016 .

[13]  R. Soria Bridging the gap between stellar-mass black holes and ultraluminous X-ray sources , 2007, 0707.2049.

[14]  D. Steeghs,et al.  A PARALLAX DISTANCE TO THE MICROQUASAR GRS 1915+105 AND A REVISED ESTIMATE OF ITS BLACK HOLE MASS , 2014, 1409.2453.

[15]  R. Urquhart,et al.  Optically thick outflows in ultraluminous supersoft sources , 2015, 1511.05275.

[16]  Qingwen Wu,et al.  Modified viscosity in accretion disks - Application to Galactic black hole binaries, intermediate mass black holes, and active galactic nuclei , 2016, 1609.09322.

[17]  A. R. King,et al.  An Unstable Central Disk in the Superluminal Black Hole X-Ray Binary GRS 1915+105 , 1997, astro-ph/9702048.

[18]  T. Belloni,et al.  Hard X‐ray states and radio emission in GRS 1915+105 , 2002 .

[19]  R. P. Fender,et al.  MERLIN observations of relativistic ejections from GRS 1915+105 , 1998, astro-ph/9812150.

[20]  L. Ji,et al.  A timing view of the heartbeat state of GRS 1915+105 , 2016, 1611.03622.

[21]  Xiang-Dong Li,et al.  Disc–corona interaction in the heartbeat state of GRS 1915+105 , 2017, 1711.03005.

[22]  The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105 , 2006, astro-ph/0606076.

[23]  Wei Cui,et al.  To appear in The Astrophysical Journal Letters BLACK HOLE SPIN IN X-RAY BINARIES: OBSERVATIONAL CONSEQUENCES II , 1997 .

[24]  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[25]  J. Qu,et al.  The X-ray view of black-hole candidate Swift J1842.5-1124 during its 2008 outburst , 2016, 1612.09110.

[26]  A. Merloni,et al.  On the limit-cycle instability in magnetized accretion discs , 2006, astro-ph/0603159.

[27]  J. Qu,et al.  THE NUSTAR VIEW OF A QPO EVOLUTION OF GRS 1915+105 , 2015, 1506.04859.

[28]  Tomaso M. Belloni,et al.  Fast Variability from Black-Hole Binaries , 2014, 1407.7373.

[29]  Juri Poutanen,et al.  Supercritically accreting stellar mass black holes as ultraluminous X-ray sources , 2006, astro-ph/0609274.

[30]  S. V. Vadawale,et al.  On the Origin of the Various Types of Radio Emission in GRS 1915+105 , 2003, astro-ph/0308096.

[31]  T. Belloni,et al.  THE FAINT “HEARTBEATS” OF IGR J17091–3624: AN EXCEPTIONAL BLACK HOLE CANDIDATE , 2011, 1112.2393.

[32]  UK.,et al.  High resolution Chandra HETG and RXTE observations of GRS 1915+105 : A hot disk atmosphere & cold gas enriched in Iron and Silicon , 2001, astro-ph/0111132.

[33]  D. Stern,et al.  DISK–WIND CONNECTION DURING THE HEARTBEATS OF GRS 1915+105 , 2016, 1610.05772.

[34]  M. Henze,et al.  Geometrical constraints on the origin of timing signals from black holes , 2014, 1404.7293.

[35]  S. V. Vadawale,et al.  GRS 1915+105: the distance, radiative processes and energy‐dependent variability , 2005, astro-ph/0504018.

[36]  I. Mirabel,et al.  A superluminal source in the Galaxy , 1994, Nature.

[37]  R. Fender,et al.  No evidence for black hole spin powering of jets in X-ray binaries , 2010, 1003.5516.

[38]  T. Belloni,et al.  Characterizing a new class of variability in GRS 1915+105 with simultaneous INTEGRAL/RXTE observations , 2005 .

[39]  Shuang-Nan Zhang,et al.  SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE NGC 1313 X-2: AN EPHEMERAL FEAST , 2013, 1311.5030.

[40]  Jochen Greiner,et al.  RXTE Observations of QPOs in the Black Hole Candidate GRS 1915+105 , 1997 .

[41]  The Netherlands.,et al.  Discovery of a 34 Hz quasi-periodic oscillation in the X-ray emission of GRS 1915+105 , 2013, 1303.4934.

[42]  Ronald A. Remillard,et al.  THE PHYSICS OF THE “HEARTBEAT” STATE OF GRS 1915+105 , 2011, 1106.0298.

[43]  O. Blaes,et al.  Relativistic Accretion Disk Models of High-State Black Hole X-Ray Binary Spectra , 2004, astro-ph/0408590.

[44]  F. Yuan,et al.  REVISITING THE THERMAL STABILITY OF RADIATION-DOMINATED THIN DISKS , 2011, 1103.0347.

[45]  A. J. Castro-Tirado,et al.  Identification of the donor in the X-ray binary GRS 1915+105 , 2001, astro-ph/0105467.

[46]  T. Belloni,et al.  GRS 1915+105 and the Disc-Jet Coupling in Accreting Black Hole Systems , 2004 .

[47]  A. Janiuk,et al.  Radiation Pressure Instability Driven Variability in the Accreting Black Holes , 2002, astro-ph/0205221.

[48]  A. Janiuk,et al.  Time‐delays between the soft and hard X‐ray bands in GRS 1915 + 105 , 2004, astro-ph/0409671.

[49]  R. Wijnands,et al.  An atlas of exotic variability in IGR J17091−3624: a comparison with GRS 1915+105 , 2017, 1703.09572.

[50]  U. Cambridge,et al.  MEASURING THE SPIN OF GRS 1915+105 WITH RELATIVISTIC DISK REFLECTION , 2009, 0909.5383.

[51]  J. Fukue Critical Accretion Disk , 2004 .

[52]  D. Walton,et al.  A spectral-timing model for ULXs in the supercritical regime , 2014, 1412.4532.

[53]  M. Gierliński,et al.  Black hole spin in GRS 1915+105 , 2006, astro-ph/0601540.