Automatic Condition Monitoring and Early Fault Detection of Gearbox

Condition based maintenance (CBM) improves decision-making performances for a maintenance program through machinery condition monitoring. Therefore, it is a key step to trace machinery health condition for CBM. In this paper, a novel method is proposed to establish a health evaluation index named automatic evaluation index (AEI) and its corresponding dynamic threshold using Wavelet Packet Transform (WPT) and Hidden Markolv Model (HMM). In this process, WPT is used to decompose signal into detail signals and exhibits prominent gear fault features. In addition, HMM employed here is to recognize two concerned states of gear in the whole life validation, including normal gear state and early gear fault state. It is also important to build a dynamic threshold to differentiate the two states automatically. The proposed dynamic threshold not only renews by itself according to the history values of AEI but also easily and automatically detects occurrence of gear early fault. Finally, a set of whole life time data ending in gear failure is used to verify the proposed method effectively. Further, some related parameters included in this method are discussed and the obtained results show that condition monitoring performance of the proposed method is excellent in detection of gear failure.© 2009 ASME