Design of phononic materials/structures for surface wave devices using topology optimization

We develop a topology optimization approach to design two- and three-dimensional phononic (elastic) materials, focusing primarily on surface wave filters and waveguides. These utilize propagation modes that transmit elastic waves where the energy is contained near a free surface of a material. The design of surface wave devices is particularly attractive given recent advances in nano- and micromanufacturing processes, such as thin-film deposition, etching, and lithography, which make it possible to precisely place thin film materials on a substrate with submicron feature resolution. We apply our topology optimization approach to a series of three problems where the layout of two materials (silicon and aluminum) is sought to achieve a prescribed objective: (1) a grating to filter bulk waves of a prescribed frequency in two and three dimensions, (2) a surface wave device that uses a patterned thin film to filter waves of a single or range of frequencies, and (3) a fully three-dimensional structure to guide a wave generated by a harmonic input on a free surface to a specified output port on the surface. From the first to the third example, the resulting topologies increase in sophistication. The results demonstrate the power and promise of our computational framework to design sophisticated surface wave devices.

[1]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[2]  M. M. Neves,et al.  Topology optimization of periodic microstructures with a penalization of highly localized buckling modes , 2002 .

[3]  Yi Min Xie,et al.  Shape and topology design for heat conduction by Evolutionary Structural Optimization , 1999 .

[4]  Wei‐Qing Huang,et al.  Acoustic-phonon transmission and thermal conductance in a double-bend quantum waveguide , 2005 .

[5]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[6]  Gregory M. Hulbert,et al.  Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics , 2006 .

[7]  A. Chopra,et al.  Perfectly matched layers for time-harmonic elastodynamics of unbounded domains : Theory and finite-element implementation , 2003 .

[8]  Publisher’s Note: “Silicon oxide thickness-dependent growth of carbon nanotubes” [Appl. Phys. Lett. 84, 109 (2004)] , 2004 .

[9]  D. Dobson Optimal Mode Coupling in Simple Planar Waveguides , 2006 .

[10]  O. Sigmund,et al.  Topology optimization using the finite volume method , 2005 .

[11]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[12]  Acoustic-phonon dispersion in nanowires , 2005 .

[13]  K. Graff Wave Motion in Elastic Solids , 1975 .

[14]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[15]  N. Kikuchi,et al.  Topological design for vibrating structures , 1995 .

[16]  Jakob S. Jensen,et al.  Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends , 2004 .

[17]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[18]  A. Evgrafov Topology optimization of slightly compressible fluids , 2006 .

[19]  R. A. Scott,et al.  Dispersive elastodynamics of 1D banded materials and structures: analysis , 2006 .

[20]  Anders Klarbring,et al.  Topology optimization of flow networks , 2003 .

[21]  Steven J. Cox,et al.  Maximizing Band Gaps in Two-Dimensional Photonic Crystals , 1999, SIAM J. Appl. Math..

[22]  Jan Drewes Achenbach,et al.  Modern Problems in Elastic Wave Propagation , 1979 .

[23]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[24]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[25]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[26]  E. Thomas,et al.  Hypersonic phononic crystals. , 2005, Physical review letters.

[27]  Noboru Kikuchi,et al.  Optima topology design of structures under dynamic loads , 1999 .

[28]  Eleftherios N. Economou,et al.  Elastic and acoustic wave band structure , 1992 .

[29]  K. Maute,et al.  Design of patterned multilayer films with eigenstrains by topology optimization , 2006 .

[30]  Steven J. Cox,et al.  Band Structure Optimization of Two-Dimensional Photonic Crystals in H-Polarization , 2000 .

[31]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[32]  C. Elachi,et al.  Waves in active and passive periodic structures: A review , 1976, Proceedings of the IEEE.

[33]  M. Kushwaha,et al.  CLASSICAL BAND STRUCTURE OF PERIODIC ELASTIC COMPOSITES , 1996 .

[34]  Kurt Maute,et al.  Topology Optimization of Fluid Problems by the Lattice Boltzmann Method , 2006 .

[35]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[36]  Isaac Harari,et al.  Studies of FE/PML for exterior problems of time-harmonic elastic waves , 2004 .

[37]  G. Kino Acoustic waves : devices, imaging, and analog signal processing , 1987 .

[38]  B. Djafari-Rouhani,et al.  Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media , 1998 .

[39]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[40]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[41]  A. Evgrafov The Limits of Porous Materials in the Topology Optimization of Stokes Flows , 2005 .

[42]  Ole Sigmund,et al.  Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  A. Haddow,et al.  Design of band-gap grid structures , 2005 .

[44]  J. Lysmer,et al.  Finite Dynamic Model for Infinite Media , 1969 .