Spherical quadratic Bézier triangles with chord length parameterization and tripolar coordinates in space
暂无分享,去创建一个
[1] Carlo H. Séquin,et al. Constructing easily invertible Be´zier surfaces that parameterize general quadrics , 1991, SMA '91.
[2] Gudrun Albrecht. An Algorithm for Parametric Quadric Patch Construction , 2003, Computing.
[3] Gerald Farin,et al. NURBS: From Projective Geometry to Practical Use , 1999 .
[4] H. Bateman,et al. Spheroidal and bipolar coordinates , 1938 .
[5] Bert Jüttler,et al. Surfaces with Rational Chord Length Parameterization , 2010, GMP.
[6] Gerald Farin,et al. Curves and surfaces for cagd , 1992 .
[7] Bert Jüttler,et al. An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..
[8] J. Oden,et al. The Mathematics of Surfaces II , 1988 .
[9] O. Bottema. Topics in Elementary Geometry , 2008 .
[10] Rida T. Farouki,et al. Bipolar and Multipolar Coordinates , 2000, IMA Conference on the Mathematics of Surfaces.
[11] Rida T. Farouki,et al. Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.
[12] Wei Lü. Curves with chord length parameterization , 2009, Comput. Aided Geom. Des..
[13] Gerald E. Farin. Rational quadratic circles are parametrized by chord length , 2006, Comput. Aided Geom. Des..
[14] Neil A. Dodgson,et al. A Circle-Preserving Variant of the Four-Point Subdivision Scheme , 2012 .
[15] J. Sánchez-Reyes,et al. Curves with rational chord-length parametrization , 2008, Comput. Aided Geom. Des..