Spherical quadratic Bézier triangles with chord length parameterization and tripolar coordinates in space

We consider special rational triangular Bezier surfaces of degree two on the sphere in standard form and show that these surfaces are parameterized by chord length. More precisely, it is shown that the ratios of the three distances of a point to the patch vertices and the ratios of the distances of the parameter point to the three vertices of the (suitably chosen) domain triangle are identical. This observation extends an observation of Farin (2006) about rational quadratic curves representing circles to the case of surfaces. In addition, we discuss the relation to tripolar coordinates.

[1]  Carlo H. Séquin,et al.  Constructing easily invertible Be´zier surfaces that parameterize general quadrics , 1991, SMA '91.

[2]  Gudrun Albrecht An Algorithm for Parametric Quadric Patch Construction , 2003, Computing.

[3]  Gerald Farin,et al.  NURBS: From Projective Geometry to Practical Use , 1999 .

[4]  H. Bateman,et al.  Spheroidal and bipolar coordinates , 1938 .

[5]  Bert Jüttler,et al.  Surfaces with Rational Chord Length Parameterization , 2010, GMP.

[6]  Gerald Farin,et al.  Curves and surfaces for cagd , 1992 .

[7]  Bert Jüttler,et al.  An algebraic approach to curves and surfaces on the sphere and on other quadrics , 1993, Comput. Aided Geom. Des..

[8]  J. Oden,et al.  The Mathematics of Surfaces II , 1988 .

[9]  O. Bottema Topics in Elementary Geometry , 2008 .

[10]  Rida T. Farouki,et al.  Bipolar and Multipolar Coordinates , 2000, IMA Conference on the Mathematics of Surfaces.

[11]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.

[12]  Wei Lü Curves with chord length parameterization , 2009, Comput. Aided Geom. Des..

[13]  Gerald E. Farin Rational quadratic circles are parametrized by chord length , 2006, Comput. Aided Geom. Des..

[14]  Neil A. Dodgson,et al.  A Circle-Preserving Variant of the Four-Point Subdivision Scheme , 2012 .

[15]  J. Sánchez-Reyes,et al.  Curves with rational chord-length parametrization , 2008, Comput. Aided Geom. Des..