A SAT Attack on the Erdős Discrepancy Conjecture
暂无分享,去创建一个
[1] P. Erdos. Some unsolved problems. , 1957 .
[2] W. T. Gowers,et al. Erdős and Arithmetic Progressions , 2013 .
[3] Marijn J. H. Heule,et al. Proceedings of SAT Competition 2013 , 2013 .
[4] Toby Walsh,et al. Handbook of satisfiability , 2009 .
[5] R. Graham,et al. Handbook of Combinatorics , 1995 .
[6] J. Beck,et al. Discrepancy Theory , 1996 .
[7] J. Matousek,et al. Geometric Discrepancy: An Illustrated Guide , 2009 .
[8] M. Ram Murty,et al. ON A CONJECTURE OF ERD ˝ OS , 2012 .
[9] Jiří Matoušek,et al. Discrepancy in arithmetic progressions , 1996 .
[10] Kunal Talwar,et al. On The Hereditary Discrepancy of Homogeneous Arithmetic Progressions , 2013 .
[11] Eugene Goldberg,et al. Verification of proofs of unsatisfiability for CNF formulas , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.
[12] Peter Borwein,et al. Completely multiplicative functions taking values in $\{-1,1\}$ , 2008, 0809.1691.
[13] Bernard Chazelle,et al. The discrepancy method - randomness and complexity , 2000 .
[14] Armin Biere,et al. Bounded model checking , 2003, Adv. Comput..
[15] William W. L. Chen. On irregularities of distribution. , 1980 .
[16] A.R.D. Mathias. Combinatorics, Geometry and Probability: On a Conjecture of Erdős and Čudakov , 1997 .
[17] Aleksandar Nikolov,et al. Optimal private halfspace counting via discrepancy , 2012, STOC '12.
[18] J. Beck,et al. Irregularities of distribution , 1987 .
[19] Armin Biere. Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013 , 2013 .
[20] József Beck,et al. Irregularities of distribution: Index of theorems and corollaries , 1987 .
[21] K. F. Roth. Remark concerning integer sequences , 1964 .
[22] Noga Alon. Transmitting in the n-Dimensional Cube , 1992, Discret. Appl. Math..