Wear behaviour of interpenetrating alumina–copper composites

[1]  J. Binner,et al.  Dry sliding wear behaviour of Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique , 2010 .

[2]  S. Kaytbay,et al.  Al2O3 Particle Size Effect on Reinforced Copper Alloys: An Experimental Study , 2009 .

[3]  J. Hao,et al.  Tribological properties of Cu-based composites and in situ synthesis of TiN/TiB2 , 2008 .

[4]  E. Fuller,et al.  Microcrack Evolution in Alumina Ceramics: Experiment and Simulation , 2005 .

[5]  Mark Hoffman,et al.  Al-Al2O3 composites with interpenetrating network structures : Composite modulus estimation , 2005 .

[6]  J. Rödel,et al.  Evolution of Mechanical Properties of Porous Alumina during Free Sintering and Hot Pressing , 2004 .

[7]  K. Trumble Prediction of a Critical Temperature for Aluminate Formation in Alumina/Copper–Oxygen Eutectic Bonding , 2004 .

[8]  J. Rödel,et al.  Influence of Oxygen Partial Pressure and Oxygen Content on the Wettability in the Copper–Oxygen–Alumina System , 2004 .

[9]  Raymond Bayer,et al.  Mechanical wear fundamentals and testing , 2004 .

[10]  T. Stolarski Modern Tribology Handbook , 2003 .

[11]  C. Sun,et al.  Thermal residual stresses in co-continuous composites , 2003 .

[12]  C. Melandri,et al.  On data dispersion in pin-on-disk wear tests , 2002 .

[13]  M. Krane,et al.  The influence of CuAlO2 on the strength of eutectically bonded Cu/Al2O3 interfaces , 2002 .

[14]  J. Rödel,et al.  Evolution of defect size and strength of porous alumina during sintering , 2000 .

[15]  I. Hutchings,et al.  Abrasive wear behaviour of an Al2O3–Al co-continuous composite , 1999 .

[16]  J. Rödel,et al.  Thermal residual strains and stresses in Al2O3/Al composites with interpenetrating networks , 1999 .

[17]  G. Garagnani,et al.  Friction and wear behavior of composites under dry sliding conditions , 1998 .

[18]  F. Kennedy,et al.  The friction and wear of Cu-based silicon carbide particulate metaal matrix composites for brake applications , 1997 .

[19]  J. Rödel,et al.  Wear Properties of Alumina/Aluminum Composites with Interpenetrating Networks , 1996 .

[20]  J. Rödel,et al.  Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks , 1995 .

[21]  Y. Mai,et al.  Wear of ceramic particle-reinforced metal-matrix composites , 1995, Journal of Materials Science.

[22]  Liangchi Zhang,et al.  Wear of ceramic particle-reinforced metal-matrix composites , 1995, Journal of Materials Science.

[23]  J. Rödel,et al.  Mechanical properties of and composites with interpenetrating networks , 1994 .

[24]  Ahmet T. Alpas,et al.  Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites , 1994 .

[25]  K. Han,et al.  Wear behaviour of aluminium matrix composite materials , 1992 .

[26]  N. Travitzky,et al.  Microstructure and properties of metal infiltrated RBSN composites , 1992 .

[27]  Y. Yoshino,et al.  Interface Structure and Bond Strength of Copper‐Bonded Alumina Substrates , 1991 .

[28]  B. Velamakanni,et al.  Method for processing metal-reinforced ceramic composites , 1990 .

[29]  Y. Yoshino Role of oxygen in bonding copper to alumina , 1989 .

[30]  Brian R. Lawn,et al.  Grain‐Size and R‐Curve Effects in the Abrasive Wear of Alumina , 1989 .

[31]  D. Tréheux,et al.  Study of copper-alumina bonding , 1986 .

[32]  F. Hosking,et al.  Composites of aluminium alloys: fabrication and wear behaviour , 1982 .

[33]  A. Chaklader,et al.  Effect of Oxygen on the Reaction Between Copper and Sapphire , 1974 .