Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations

Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research–Atmospheric Environmental Research, Garmisch‐Partenkirchen, Germany Technical University Dresden, Institute of Hydrology und Meteorology, Dresden, Germany Karlsruhe Institute of Technology, Institute of Geography and Geoecology, Karlsruhe, Germany 4 Institute of Geography, University of Augsburg, Augsburg, Germany Los Alamos National Laboratory, Earth and Environmental Sciences Division, Applied Terrestrial, Energy and Atmospheric Modeling, New Mexico, USA Correspondence Matthias Mauder, KIT/IMK‐IFU, Kreuzeckbahnstraße 19, 82467 Garmisch‐Partenkirchen. Email: matthias.mauder@kit.edu Funding information Helmholtz‐Gemeinschaft, Grant/Award Number: VH‐NG‐843; Helmholtz Association

[1]  T. Foken The energy balance closure problem: an overview. , 2008, Ecological applications : a publication of the Ecological Society of America.

[2]  Harald Kunstmann,et al.  Implementation and performance analysis of a high resolution coupled numerical weather and river runoff prediction model system for an Alpine catchment , 2012, Environ. Model. Softw..

[3]  R. Desjardins,et al.  Scale analysis of airborne flux measurements over heterogeneous terrain in a boreal ecosystem , 2007 .

[4]  A. Hammerle,et al.  Insights from Independent Evapotranspiration Estimates for Closing the Energy Balance: A Grassland Case Study , 2010 .

[5]  T. W. Horst,et al.  Correction of a Non-orthogonal, Three-Component Sonic Anemometer for Flow Distortion by Transducer Shadowing , 2015, Boundary-Layer Meteorology.

[6]  Andre Peters,et al.  Separating precipitation and evapotranspiration from noise – a new filter routine for high-resolution lysimeter data , 2013 .

[7]  Thomas Foken,et al.  Sensitivity analysis for two ground heat flux calculation approaches , 2005 .

[8]  G. Katul,et al.  Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer , 2015 .

[9]  Philip Marsh,et al.  Observations and modeling of turbulent fluxes during melt at the shrub-tundra transition zone 1: point scale variations. , 2010 .

[10]  William J. Massman,et al.  Reflections on the surface energy imbalance problem , 2012 .

[11]  Siegfried Raasch,et al.  LES Study of the Energy Imbalance Problem with Eddy Covariance Fluxes , 2004 .

[12]  T. Streck,et al.  On the use of the post-closure methods uncertainty band to evaluate the performance of land surface models against eddy covariance flux data , 2014 .

[13]  S. Seneviratne,et al.  Energy balance closure of eddy-covariance data: a multisite analysis for European FLUXNET stations. , 2010 .

[14]  H. Schmid,et al.  Reduced snow cover affects productivity of upland temperate grasslands , 2017 .

[15]  Harald Kunstmann,et al.  Inverse distributed hydrological modelling of Alpine catchments , 2005 .

[16]  G. Kiely,et al.  A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape-scale heterogeneity , 2013 .

[17]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[18]  Yadvinder Malhi,et al.  A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation , 2003 .

[19]  Riccardo Rigon,et al.  GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects , 2013 .

[20]  Roberto Udisti,et al.  Correction to “Evolution of chemical peak shapes in the Dome C, Antarctica, ice core” , 2007 .

[21]  H. Kunstmann,et al.  Turbulent flux variability and energy balance closure in the TERENO prealpine observatory: a hydrometeorological data analysis , 2018, Theoretical and Applied Climatology.

[22]  Giacomo Bertoldi,et al.  The GEOTOP snow module , 2004 .

[23]  Dario Papale,et al.  Eddy Covariance: A Practical Guide to Measurement and Data Analysis , 2012 .

[24]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[25]  William J. Massman,et al.  All Sonic Anemometers Need to Correct for Transducer and Structural Shadowing in Their Velocity Measurements , 2016 .

[26]  Hans Peter Schmid,et al.  Experimental design for flux measurements: matching scales of observations and fluxes , 1997 .

[27]  G. Liston,et al.  A meteorological distribution system for high-resolution terrestrial modeling (MicroMet) , 2004 .

[28]  H. Schmid,et al.  Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements , 2015 .

[29]  V. Wulfmeyer,et al.  Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand , 2011 .

[30]  Larry Mahrt,et al.  Flux Sampling Errors for Aircraft and Towers , 1998 .

[31]  C. Mann,et al.  A Practical Treatise on Diseases of the Skin , 1889, Atlanta Medical and Surgical Journal (1884).

[32]  Irena Hajnsek,et al.  A Network of Terrestrial Environmental Observatories in Germany , 2011 .

[33]  Sonia I. Seneviratne,et al.  A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration , 2015 .

[34]  M. Mauder,et al.  Mesoscale Eddies Affect Near-Surface Turbulent Exchange: Evidence from Lidar and Tower Measurements , 2015 .

[35]  Thomas Foken,et al.  Extension of the Averaging Time in Eddy-Covariance Measurements and Its Effect on the Energy Balance Closure , 2014, Boundary-Layer Meteorology.

[36]  G. Heinemann,et al.  Evaporation over a heterogeneous land surface - The EVA-GRIPS project , 2006 .

[37]  H. Vereecken,et al.  Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket , 2014 .

[38]  K. Jon Ranson,et al.  The Boreal Ecosystem-Atmosphere Study (BOREAS) : an overview and early results from the 1994 field year , 1995 .

[39]  E. Borg,et al.  TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change , 2016, Environmental Earth Sciences.

[40]  R. Desjardins,et al.  Evaluation of Two Energy Balance Closure Parametrizations , 2014, Boundary-Layer Meteorology.

[41]  Thomas Foken,et al.  Eddy-Covariance software TK3 , 2015 .

[42]  K. Butterbach‐Bahl,et al.  Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany. , 2017, Environmental Pollution.

[43]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[44]  T. Vesala,et al.  On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm , 2005 .

[45]  Hans Peter Schmid,et al.  A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements , 2013 .

[46]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[47]  W. Oechel,et al.  Energy balance closure at FLUXNET sites , 2002 .

[48]  R. Rigon,et al.  Spatio‐temporal variability of water and energy fluxes – a case study for a mesoscale catchment in pre‐alpine environment , 2016 .

[49]  B. Merz,et al.  High-Resolution Climate Change Impact Analysis on Medium-Sized River Catchments in Germany: An Ensemble Assessment , 2013 .