Lifted Filtering via Exchangeable Decomposition

We present a model for recursive Bayesian filtering based on lifted multiset states. Combining multisets with lifting makes it possible to simultaneously exploit multiple strategies for reducing inference complexity when compared to list-based grounded state representations. The core idea is to borrow the concept of Maximally Parallel Multiset Rewriting Systems and to enhance it by concepts from Rao-Blackwellisation and Lifted Inference, giving a representation of state distributions that enables efficient inference. In worlds where the random variables that define the system state are exchangeable - where the identity of entities does not matter - it automatically uses a representation that abstracts from ordering (achieving an exponential reduction in complexity) and it automatically adapts when observations or system dynamics destroy exchangeability by breaking symmetry.

[1]  Luc De Raedt,et al.  A particle filter for hybrid relational domains , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  T. Kirste,et al.  Computational State Space Models for Activity and Intention Recognition. A Feasibility Study , 2014, PloS one.

[3]  Svetha Venkatesh,et al.  Policy Recognition in the Abstract Hidden Markov Model , 2002, J. Artif. Intell. Res..

[4]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[5]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[6]  Luc De Raedt,et al.  Stochastic relational processes: Efficient inference and applications , 2011, Machine Learning.

[7]  David Poole,et al.  First-order probabilistic inference , 2003, IJCAI.

[8]  Thomas Kirste,et al.  Sequential Lifted Bayesian Filtering in Multiset Rewriting Systems , 2017, ArXiv.

[9]  Paolo Milazzo,et al.  Maximally Parallel Probabilistic Semantics for Multiset Rewriting , 2011, Fundam. Informaticae.

[10]  Guy Van den Broeck,et al.  Tractability through Exchangeability: A New Perspective on Efficient Probabilistic Inference , 2014, AAAI.

[11]  Odile Papini,et al.  Information Fusion , 2014, Computer Vision, A Reference Guide.

[12]  Eyal Amir,et al.  First-Order Logical Filtering , 2005, IJCAI.

[13]  Jaesik Choi,et al.  Learning Relational Kalman Filtering , 2015, AAAI.

[14]  Scott Sanner,et al.  Practical solution techniques for first-order MDPs , 2009, Artif. Intell..

[15]  Eyal Amir,et al.  Sampling First Order Logical Particles , 2008, UAI.

[16]  Luc De Raedt,et al.  Statistical Relational Artificial Intelligence: Logic, Probability, and Computation , 2016, Statistical Relational Artificial Intelligence.

[17]  Poland ÃLódź,et al.  International Journal of Foundations of Computer Science c ○ World Scientific Publishing Company EFFICIENT ALGORITHMS FOR (δ, γ, α) AND , 2008 .

[18]  Bernt Schiele,et al.  A tutorial on human activity recognition using body-worn inertial sensors , 2014, CSUR.

[19]  John C. Mitchell,et al.  A meta-notation for protocol analysis , 1999, Proceedings of the 12th IEEE Computer Security Foundations Workshop.

[20]  Pedro M. Domingos,et al.  Probabilistic theorem proving , 2011, UAI.

[21]  Lambert Schomaker,et al.  2000 IEEE/RSJ International Conference On Intelligent Robots And Systems , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[22]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[23]  Pedro M. Domingos,et al.  Exchangeable Variable Models , 2014, ICML.

[24]  Subrata Das,et al.  Factored reasoning for monitoring dynamic team and goal formation , 2009, Inf. Fusion.

[25]  Dieter Fox,et al.  Bayesian Filtering for Location Estimation , 2003, IEEE Pervasive Comput..

[26]  Giancarlo Mauri,et al.  Dynamical probabilistic P systems , 2006, Int. J. Found. Comput. Sci..

[27]  Xavier Boyen,et al.  Tractable Inference for Complex Stochastic Processes , 1998, UAI.

[28]  Pedro M. Domingos,et al.  Sum-product networks: A new deep architecture , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[29]  Kristian Kersting,et al.  Counting Belief Propagation , 2009, UAI.